|
|
|
from typing import Dict, Optional, Union
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.distributed as dist
|
|
|
|
import torch.nn as nn
|
|
|
|
from torch import Tensor
|
|
|
|
from torch.optim import Optimizer
|
|
|
|
|
|
|
|
|
|
|
|
class OptimizerWrapper:
|
|
|
|
"""
|
|
|
|
A standard interface for optimizers wrapped by the Booster.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
optim (Optimizer): The optimizer to be wrapped.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, optim: Optimizer):
|
|
|
|
self.optim = optim
|
|
|
|
|
|
|
|
@property
|
|
|
|
def parameters(self):
|
|
|
|
params = []
|
|
|
|
|
|
|
|
for group in self.param_groups:
|
|
|
|
params += group["params"]
|
|
|
|
return params
|
|
|
|
|
|
|
|
@property
|
|
|
|
def param_groups(self):
|
|
|
|
return self.optim.param_groups
|
|
|
|
|
|
|
|
@property
|
|
|
|
def defaults(self):
|
|
|
|
return self.optim.defaults
|
|
|
|
|
|
|
|
def add_param_group(self, *args, **kwargs):
|
|
|
|
return self.optim.add_param_group(*args, **kwargs)
|
|
|
|
|
|
|
|
def step(self, *args, **kwargs):
|
|
|
|
"""
|
|
|
|
Performs a single optimization step.
|
|
|
|
"""
|
|
|
|
return self.optim.step(*args, **kwargs)
|
|
|
|
|
|
|
|
def zero_grad(self, *args, **kwargs):
|
|
|
|
"""
|
|
|
|
Clears the gradients of all optimized `torch.Tensor`.
|
|
|
|
"""
|
|
|
|
self.optim.zero_grad(*args, **kwargs)
|
|
|
|
|
|
|
|
def backward(self, loss: Tensor, *args, **kwargs):
|
|
|
|
"""
|
|
|
|
Performs a backward pass on the loss.
|
|
|
|
"""
|
|
|
|
loss.backward(*args, **kwargs)
|
|
|
|
|
|
|
|
def backward_by_grad(self, tensor: Tensor, grad: Tensor):
|
|
|
|
torch.autograd.backward(tensor, grad)
|
|
|
|
|
|
|
|
def state_dict(self):
|
|
|
|
"""
|
|
|
|
Returns the optimizer state.
|
|
|
|
"""
|
|
|
|
return self.optim.state_dict()
|
|
|
|
|
|
|
|
def load_state_dict(self, *args, **kwargs):
|
|
|
|
"""
|
|
|
|
Loads the optimizer state.
|
|
|
|
"""
|
|
|
|
self.optim.load_state_dict(*args, **kwargs)
|
|
|
|
|
|
|
|
def clip_grad_by_value(self, clip_value: float, *args, **kwargs) -> None:
|
|
|
|
"""
|
|
|
|
Clips gradient of an iterable of parameters at specified min and max values.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
clip_value (float or int): maximum allowed value of the gradients. Gradients are clipped in the range
|
|
|
|
|
|
|
|
Note:
|
|
|
|
In PyTorch Torch 2.0 and above, you can pass in foreach=True as kwargs to clip_grad_value_ to use the
|
|
|
|
faster implementation. Please refer to the PyTorch documentation for more details.
|
|
|
|
"""
|
|
|
|
nn.utils.clip_grad_value_(self.parameters, clip_value, *args, **kwargs)
|
|
|
|
|
|
|
|
def clip_grad_by_norm(
|
|
|
|
self,
|
|
|
|
max_norm: Union[float, int],
|
|
|
|
norm_type: Union[float, int] = 2.0,
|
|
|
|
error_if_nonfinite: bool = False,
|
|
|
|
*args,
|
|
|
|
**kwargs,
|
|
|
|
) -> Tensor:
|
|
|
|
"""
|
|
|
|
Clips gradient norm of an iterable of parameters.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
max_norm (float or int): max norm of the gradients
|
|
|
|
norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for infinity norm.
|
|
|
|
error_if_nonfinite (bool): if True, an error is raised if the total norm is non-finite. Default: False
|
|
|
|
|
|
|
|
Note:
|
|
|
|
In PyTorch Torch 2.0 and above, you can pass in foreach=True as kwargs to clip_grad_norm_ to use the
|
|
|
|
faster implementation. Please refer to the PyTorch documentation for more details.
|
|
|
|
"""
|
|
|
|
norm = nn.utils.clip_grad_norm_(self.parameters, max_norm, norm_type, error_if_nonfinite, *args, **kwargs)
|
|
|
|
return norm
|
|
|
|
|
|
|
|
def scale_loss(self, loss: Tensor):
|
|
|
|
"""
|
|
|
|
Scales the loss for mixed precision training.
|
|
|
|
|
|
|
|
Note: Only available for optimizers with mixed precision training.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
loss (Tensor): The loss to be scaled.
|
|
|
|
"""
|
|
|
|
raise NotImplementedError(
|
|
|
|
"The method scale_loss is only available for optimizers with mixed precision training"
|
|
|
|
)
|
|
|
|
|
|
|
|
def unscale_grad(self):
|
|
|
|
"""
|
|
|
|
Unscale the gradients for mixed precision training.
|
|
|
|
|
|
|
|
Note: Only available for optimizers with mixed precision training.
|
|
|
|
"""
|
|
|
|
raise NotImplementedError(
|
|
|
|
"The method unscale_grad is only available for optimizers with mixed precision training"
|
|
|
|
)
|
|
|
|
|
|
|
|
def unwrap(self):
|
|
|
|
"""
|
|
|
|
Unwrap the optimizer for checkpoint saving/loading.
|
|
|
|
"""
|
|
|
|
return self.optim
|
|
|
|
|
|
|
|
|
|
|
|
class DistributedOptim(Optimizer):
|
|
|
|
def setup_distributed(
|
|
|
|
self,
|
|
|
|
tp_group: Optional[dist.ProcessGroup] = None,
|
|
|
|
dp_group: Optional[dist.ProcessGroup] = None,
|
|
|
|
shard_to_working_param: Optional[Dict] = {},
|
|
|
|
padding_map: Optional[Dict] = None,
|
|
|
|
is_zero: Optional[bool] = False,
|
|
|
|
):
|
|
|
|
"""Assign process groups for TP and ZeRO 2.
|
|
|
|
Arguments:
|
|
|
|
tp_group (dist.ProcessGroup): Tensor Parallel process group
|
|
|
|
dp_group (dist.ProcessGroup): ZeRO stage 2 process group
|
|
|
|
shard_to_working_param (Dict): ZeRO stage 2 feeds the optimizer a sharded param view to match grad shape.
|
|
|
|
This maps from id(view) to model params used in forward & backward.
|
|
|
|
padding_map (Dict): Per-param padding from ZeRO stage 2
|
|
|
|
is_zero (bool): Whether to use ZeRO stage 2.
|
|
|
|
"""
|
|
|
|
|
|
|
|
raise NotImplementedError("setup_distributed for TP/DP isn't supported by this optimizer yet!")
|