ColossalAI/colossalai/nn/optimizer/hybrid_adam.py

192 lines
7.8 KiB
Python
Raw Normal View History

from typing import Any, Optional
import torch
from colossalai.kernel.op_builder import FusedOptimBuilder
from colossalai.utils import multi_tensor_applier
from .cpu_adam import CPUAdam
class HybridAdam(CPUAdam):
"""Implements Adam algorithm.
Supports parameters updating on both GPU and CPU, depending on the device of parameters.
But the parameters and gradients should on the same device:
* Parameters on CPU and gradients on CPU is allowed.
* Parameters on GPU and gradients on GPU is allowed.
* Parameters on GPU and gradients on CPU is **not** allowed.
2022-04-01 08:27:03 +00:00
`HybridAdam` requires CUDA extensions which can be built during installation or runtime.
This version of Hybrid Adam is an hybrid of CPUAdam and FusedAdam.
2022-04-01 08:27:03 +00:00
* For parameters updating on CPU, it uses CPUAdam.
* For parameters updating on GPU, it uses FusedAdam.
* Hybrid precision calculation of fp16 and fp32 is supported, eg fp32 parameters and fp16 gradients.
:class:`colossalai.nn.optimizer.HybridAdam` may be used as a drop-in replacement for ``torch.optim.AdamW``,
or ``torch.optim.Adam`` with ``adamw_mode=False``
Adam was been proposed in `Adam: A Method for Stochastic Optimization`_.
Arguments:
model_params (iterable): iterable of parameters of dicts defining
parameter groups.
lr (float, optional): learning rate. (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square. (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability. (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
algorithm from the paper `On the Convergence of Adam and Beyond`_
(default: False) NOT SUPPORTED yet in CPUAdam!
adamw_mode (boolean, optional): Apply L2 regularization or weight decay
True for decoupled weight decay(also known as AdamW) (default: True)
simd_log (boolean, optional): whether to show if you are using SIMD to
accelerate. (default: False)
2022-08-12 10:01:02 +00:00
nvme_offload_fraction (float, optional): Fraction of optimizer states to be offloaded to NVMe. Defaults to 0.0.
nvme_offload_dir (Optional[str], optional): Directory to save NVMe offload files.
If it's ``None``, a random temporary directory will be used. Defaults to None.
2022-04-01 08:27:03 +00:00
.. _Adam\: A Method for Stochastic Optimization:
https://arxiv.org/abs/1412.6980
.. _On the Convergence of Adam and Beyond:
https://openreview.net/forum?id=ryQu7f-RZ
"""
# Number of fp32 shards for per parameter
# Param weight, grad, momentum and variance
num_fp32_shards_per_param = 4
def __init__(
self,
model_params,
lr=1e-3,
bias_correction=True,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
adamw_mode=True,
nvme_offload_fraction: float = 0.0,
nvme_offload_dir: Optional[str] = None,
**defaults: Any,
):
super().__init__(
model_params,
lr,
bias_correction,
betas,
eps,
weight_decay,
adamw_mode,
nvme_offload_fraction,
nvme_offload_dir,
)
if torch.cuda.is_available():
fused_optim = FusedOptimBuilder().load()
self.gpu_adam_op = fused_optim.multi_tensor_adam
self._dummy_overflow_buf = torch.cuda.IntTensor([0])
@torch.no_grad()
def step(self, closure=None, div_scale: float = -1):
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
self._pre_step("exp_avg", "exp_avg_sq")
for _, group in enumerate(self.param_groups):
g_l, p_l, m_l, v_l = [], [], [], []
group_step = 0
for _, p in enumerate(group["params"]):
if p.grad is None:
continue
state = self.state[p]
target_device = p.device
if len(state) == 0:
state["step"] = 0
# gradient momentums
state["exp_avg"] = torch.zeros_like(p, device=target_device)
# gradient variances
state["exp_avg_sq"] = torch.zeros_like(p, device=target_device)
self._post_state_init(p)
state["step"] += 1
group_step = state["step"]
beta1, beta2 = group["betas"]
if target_device.type == "cpu" or target_device.type == "npu":
assert state["exp_avg"].device.type in ("cpu", "npu"), "exp_avg should stay on cpu"
assert state["exp_avg_sq"].device.type in ("cpu", "npu"), "exp_avg should stay on cpu"
self._pre_update(p, "exp_avg", "exp_avg_sq")
if p.grad.dtype is torch.bfloat16 or p.grad.device.type == "npu":
# cpu adam kernel does not support bf16 now
bias_correction1 = 1 - beta1 ** state["step"]
bias_correction2 = 1 - beta2 ** state["step"]
self.torch_adam_update(
p.data,
p.grad.data,
state["exp_avg"],
state["exp_avg_sq"],
group["lr"],
beta1,
beta2,
group["eps"],
group["weight_decay"],
bias_correction1,
bias_correction2,
self.adamw_mode,
)
else:
self.cpu_adam_op.step(
state["step"],
group["lr"],
beta1,
beta2,
group["eps"],
group["weight_decay"],
group["bias_correction"],
p.data,
p.grad.data,
state["exp_avg"],
state["exp_avg_sq"],
div_scale,
)
self._post_update(p, "exp_avg", "exp_avg_sq")
elif target_device.type == "cuda":
assert state["exp_avg"].device.type == "cuda", "exp_avg should stay on cuda"
assert state["exp_avg_sq"].device.type == "cuda", "exp_avg should stay on cuda"
# record the state by group and update at once
g_l.append(p.grad.data)
p_l.append(p.data)
m_l.append(state["exp_avg"])
v_l.append(state["exp_avg_sq"])
else:
raise RuntimeError
if len(g_l) > 0:
adamw_mode = 1 if self.adamw_mode else 0
bias_correction = 1 if group["bias_correction"] else 0
multi_tensor_applier(
self.gpu_adam_op,
self._dummy_overflow_buf,
[g_l, p_l, m_l, v_l],
group["lr"],
group["betas"][0],
group["betas"][1],
group["eps"],
group_step,
adamw_mode,
bias_correction,
group["weight_decay"],
div_scale,
)
self._post_step()
return loss