2023-03-28 12:25:36 +00:00
|
|
|
import os
|
|
|
|
import tempfile
|
|
|
|
from contextlib import nullcontext
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
import torch.distributed as dist
|
|
|
|
from coati.models.gpt import GPTActor
|
|
|
|
from coati.trainer.strategies import ColossalAIStrategy, DDPStrategy
|
|
|
|
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
|
|
|
|
|
|
|
|
from colossalai.nn.optimizer import HybridAdam
|
2023-04-06 06:51:35 +00:00
|
|
|
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
2023-03-28 12:25:36 +00:00
|
|
|
|
|
|
|
GPT_CONFIG = GPT2Config(n_embd=128, n_layer=4, n_head=4)
|
|
|
|
|
|
|
|
|
|
|
|
def get_data(batch_size: int, seq_len: int = 10) -> dict:
|
|
|
|
input_ids = torch.randint(0, 50257, (batch_size, seq_len), device='cuda')
|
|
|
|
attention_mask = torch.ones_like(input_ids)
|
|
|
|
return dict(input_ids=input_ids, attention_mask=attention_mask)
|
|
|
|
|
|
|
|
|
|
|
|
def run_test_checkpoint(strategy):
|
|
|
|
BATCH_SIZE = 2
|
|
|
|
|
|
|
|
if strategy == 'ddp':
|
|
|
|
strategy = DDPStrategy()
|
|
|
|
elif strategy == 'colossalai_gemini':
|
|
|
|
strategy = ColossalAIStrategy(stage=3, placement_policy='cuda', initial_scale=2**5)
|
|
|
|
elif strategy == 'colossalai_zero2':
|
|
|
|
strategy = ColossalAIStrategy(stage=2, placement_policy='cuda')
|
|
|
|
else:
|
|
|
|
raise ValueError(f'Unsupported strategy "{strategy}"')
|
|
|
|
|
|
|
|
with strategy.model_init_context():
|
|
|
|
actor = GPTActor(config=GPT_CONFIG).cuda()
|
|
|
|
|
|
|
|
actor_optim = HybridAdam(actor.parameters())
|
|
|
|
|
|
|
|
actor, actor_optim = strategy.prepare((actor, actor_optim))
|
|
|
|
|
|
|
|
def run_step():
|
|
|
|
data = get_data(BATCH_SIZE)
|
|
|
|
action_mask = torch.ones_like(data['attention_mask'], dtype=torch.bool)
|
|
|
|
action_log_probs = actor(data['input_ids'], action_mask.size(1), data['attention_mask'])
|
|
|
|
loss = action_log_probs.sum()
|
|
|
|
strategy.backward(loss, actor, actor_optim)
|
|
|
|
strategy.optimizer_step(actor_optim)
|
|
|
|
|
|
|
|
run_step()
|
|
|
|
|
|
|
|
ctx = tempfile.TemporaryDirectory() if dist.get_rank() == 0 else nullcontext()
|
|
|
|
|
|
|
|
with ctx as dirname:
|
|
|
|
rank0_dirname = [dirname]
|
|
|
|
dist.broadcast_object_list(rank0_dirname)
|
|
|
|
rank0_dirname = rank0_dirname[0]
|
|
|
|
|
|
|
|
model_path = os.path.join(rank0_dirname, 'model.pt')
|
|
|
|
optim_path = os.path.join(rank0_dirname, f'optim-r{dist.get_rank()}.pt')
|
|
|
|
|
|
|
|
strategy.save_model(actor, model_path, only_rank0=True)
|
|
|
|
strategy.save_optimizer(actor_optim, optim_path, only_rank0=False)
|
|
|
|
|
|
|
|
dist.barrier()
|
|
|
|
|
|
|
|
strategy.load_model(actor, model_path, strict=False)
|
|
|
|
strategy.load_optimizer(actor_optim, optim_path)
|
|
|
|
|
|
|
|
dist.barrier()
|
|
|
|
|
|
|
|
run_step()
|
|
|
|
|
|
|
|
|
|
|
|
def run_dist(rank, world_size, port, strategy):
|
|
|
|
os.environ['RANK'] = str(rank)
|
|
|
|
os.environ['LOCAL_RANK'] = str(rank)
|
|
|
|
os.environ['WORLD_SIZE'] = str(world_size)
|
|
|
|
os.environ['MASTER_ADDR'] = 'localhost'
|
|
|
|
os.environ['MASTER_PORT'] = str(port)
|
|
|
|
run_test_checkpoint(strategy)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.dist
|
|
|
|
@pytest.mark.parametrize('world_size', [2])
|
|
|
|
@pytest.mark.parametrize('strategy', ['ddp', 'colossalai_zero2', 'colossalai_gemini'])
|
|
|
|
@rerun_if_address_is_in_use()
|
|
|
|
def test_checkpoint(world_size, strategy):
|
2023-04-06 06:51:35 +00:00
|
|
|
spawn(run_dist, world_size, strategy=strategy)
|
2023-03-28 12:25:36 +00:00
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
test_checkpoint(2, 'colossalai_zero2')
|