ColossalAI/tests/test_fx/test_meta/test_backward.py

54 lines
1.6 KiB
Python
Raw Normal View History

import pytest
import timm.models as tmm
import torch
import torchvision.models as tm
from colossalai.fx._compatibility import is_compatible_with_meta
if is_compatible_with_meta():
from colossalai.fx.profiler import MetaTensor
from colossalai.testing import clear_cache_before_run
tm_models = [
tm.vgg11,
tm.resnet18,
tm.densenet121,
tm.mobilenet_v3_small,
tm.resnext50_32x4d,
tm.wide_resnet50_2,
tm.regnet_x_16gf,
tm.mnasnet0_5,
tm.efficientnet_b0,
]
tmm_models = [
tmm.resnest.resnest50d, tmm.beit.beit_base_patch16_224, tmm.cait.cait_s24_224, tmm.efficientnet.efficientnetv2_m,
tmm.resmlp_12_224, tmm.vision_transformer.vit_base_patch16_224, tmm.deit_base_distilled_patch16_224,
tmm.convnext.convnext_base, tmm.vgg.vgg11, tmm.dpn.dpn68, tmm.densenet.densenet121, tmm.rexnet.rexnet_100,
tmm.swin_transformer.swin_base_patch4_window7_224
]
@pytest.mark.skipif(not is_compatible_with_meta(), reason='torch version is lower than 1.12.0')
@clear_cache_before_run()
def test_torchvision_models():
for m in tm_models:
model = m()
data = torch.rand(100000, 3, 224, 224, device='meta')
model(MetaTensor(data, fake_device=torch.device('cpu'))).sum().backward()
@pytest.mark.skipif(not is_compatible_with_meta(), reason='torch version is lower than 1.12.0')
@clear_cache_before_run()
def test_timm_models():
for m in tmm_models:
model = m()
data = torch.rand(100000, 3, 224, 224, device='meta')
model(MetaTensor(data, fake_device=torch.device('cpu'))).sum().backward()
if __name__ == '__main__':
test_torchvision_models()
test_timm_models()