You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_infer/test_infer_engine.py

95 lines
3.9 KiB

[Feature] The first PR to Add TP inference engine, kv-cache manager and related kernels for our inference system (#4577) * [infer] Infer/llama demo (#4503) * add * add infer example * finish * finish * stash * fix * [Kernels] add inference token attention kernel (#4505) * add token forward * fix tests * fix comments * add try import triton * add adapted license * add tests check * [Kernels] add necessary kernels (llama & bloom) for attention forward and kv-cache manager (#4485) * added _vllm_rms_norm * change place * added tests * added tests * modify * adding kernels * added tests: * adding kernels * modify * added * updating kernels * adding tests * added tests * kernel change * submit * modify * added * edit comments * change name * change commnets and fix import * add * added * combine codes (#4509) * [feature] add KV cache manager for llama & bloom inference (#4495) * add kv cache memory manager * add stateinfo during inference * format * format * rename file * add kv cache test * revise on BatchInferState * file dir change * [Bug FIx] import llama context ops fix (#4524) * added _vllm_rms_norm * change place * added tests * added tests * modify * adding kernels * added tests: * adding kernels * modify * added * updating kernels * adding tests * added tests * kernel change * submit * modify * added * edit comments * change name * change commnets and fix import * add * added * fix * add ops into init.py * add * [Infer] Add TPInferEngine and fix file path (#4532) * add engine for TP inference * move file path * update path * fix TPInferEngine * remove unused file * add engine test demo * revise TPInferEngine * fix TPInferEngine, add test * fix * Add Inference test for llama (#4508) * add kv cache memory manager * add stateinfo during inference * add * add infer example * finish * finish * format * format * rename file * add kv cache test * revise on BatchInferState * add inference test for llama * fix conflict * feature: add some new features for llama engine * adapt colossalai triton interface * Change the parent class of llama policy * add nvtx * move llama inference code to tensor_parallel * fix __init__.py * rm tensor_parallel * fix: fix bugs in auto_policy.py * fix:rm some unused codes * mv colossalai/tpinference to colossalai/inference/tensor_parallel * change __init__.py * save change * fix engine * Bug fix: Fix hang * remove llama_infer_engine.py --------- Co-authored-by: yuanheng-zhao <jonathan.zhaoyh@gmail.com> Co-authored-by: CjhHa1 <cjh18671720497@outlook.com> * [infer] Add Bloom inference policy and replaced methods (#4512) * add bloom inference methods and policy * enable pass BatchInferState from model forward * revise bloom infer layers/policies * add engine for inference (draft) * add test for bloom infer * fix bloom infer policy and flow * revise bloom test * fix bloom file path * remove unused codes * fix bloom modeling * fix dir typo * fix trivial * fix policy * clean pr * trivial fix * Revert "[infer] Add Bloom inference policy and replaced methods (#4512)" (#4552) This reverts commit 17cfa5714083a81a505c097f1c411cd28162d922. * [Doc] Add colossal inference doc (#4549) * create readme * add readme.md * fix typos * [infer] Add Bloom inference policy and replaced methods (#4553) * add bloom inference methods and policy * enable pass BatchInferState from model forward * revise bloom infer layers/policies * add engine for inference (draft) * add test for bloom infer * fix bloom infer policy and flow * revise bloom test * fix bloom file path * remove unused codes * fix bloom modeling * fix dir typo * fix trivial * fix policy * clean pr * trivial fix * trivial * Fix Bugs In Llama Model Forward (#4550) * add kv cache memory manager * add stateinfo during inference * add * add infer example * finish * finish * format * format * rename file * add kv cache test * revise on BatchInferState * add inference test for llama * fix conflict * feature: add some new features for llama engine * adapt colossalai triton interface * Change the parent class of llama policy * add nvtx * move llama inference code to tensor_parallel * fix __init__.py * rm tensor_parallel * fix: fix bugs in auto_policy.py * fix:rm some unused codes * mv colossalai/tpinference to colossalai/inference/tensor_parallel * change __init__.py * save change * fix engine * Bug fix: Fix hang * remove llama_infer_engine.py * bug fix: fix bugs about infer_state.is_context_stage * remove pollcies * fix: delete unused code * fix: delete unused code * remove unused coda * fix conflict --------- Co-authored-by: yuanheng-zhao <jonathan.zhaoyh@gmail.com> Co-authored-by: CjhHa1 <cjh18671720497@outlook.com> * [doc] add colossal inference fig (#4554) * create readme * add readme.md * fix typos * upload fig * [NFC] fix docstring for colossal inference (#4555) Fix docstring and comments in kv cache manager and bloom modeling * fix docstring in llama modeling (#4557) * [Infer] check import vllm (#4559) * change import vllm * import apply_rotary_pos_emb * change import location * [DOC] add installation req (#4561) * add installation req * fix * slight change * remove empty * [Feature] rms-norm transfer into inference llama.py (#4563) * add installation req * fix * slight change * remove empty * add rmsnorm polciy * add * clean codes * [infer] Fix tp inference engine (#4564) * fix engine prepare data * add engine test * use bloom for testing * revise on test * revise on test * reset shardformer llama (#4569) * [infer] Fix engine - tensors on different devices (#4570) * fix diff device in engine * [codefactor] Feature/colossal inference (#4579) * code factors * remove * change coding (#4581) * [doc] complete README of colossal inference (#4585) * complete fig * Update README.md * [doc]update readme (#4586) * update readme * Update README.md * bug fix: fix bus in llama and bloom (#4588) * [BUG FIX]Fix test engine in CI and non-vllm kernels llama forward (#4592) * fix tests * clean * clean * fix bugs * add * fix llama non-vllm kernels bug * modify * clean codes * [Kernel]Rmsnorm fix (#4598) * fix tests * clean * clean * fix bugs * add * fix llama non-vllm kernels bug * modify * clean codes * add triton rmsnorm * delete vllm kernel flag * [Bug Fix]Fix bugs in llama (#4601) * fix tests * clean * clean * fix bugs * add * fix llama non-vllm kernels bug * modify * clean codes * bug fix: remove rotary_positions_ids --------- Co-authored-by: cuiqing.li <lixx3527@gmail.com> * [kernel] Add triton layer norm & replace norm for bloom (#4609) * add layernorm for inference * add test for layernorm kernel * add bloom layernorm replacement policy * trivial: path * [Infer] Bug fix rotary embedding in llama (#4608) * fix rotary embedding * delete print * fix init seq len bug * rename pytest * add benchmark for llama * refactor codes * delete useless code * [bench] Add bloom inference benchmark (#4621) * add bloom benchmark * readme - update benchmark res * trivial - uncomment for testing (#4622) * [Infer] add check triton and cuda version for tests (#4627) * fix rotary embedding * delete print * fix init seq len bug * rename pytest * add benchmark for llama * refactor codes * delete useless code * add check triton and cuda * Update sharder.py (#4629) * [Inference] Hot fix some bugs and typos (#4632) * fix * fix test * fix conflicts * [typo]Comments fix (#4633) * fallback * fix commnets * bug fix: fix some bugs in test_llama and test_bloom (#4635) * [Infer] delete benchmark in tests and fix bug for llama and bloom (#4636) * fix rotary embedding * delete print * fix init seq len bug * rename pytest * add benchmark for llama * refactor codes * delete useless code * add check triton and cuda * delete benchmark and fix infer bugs * delete benchmark for tests * delete useless code * delete bechmark function in utils * [Fix] Revise TPInferEngine, inference tests and benchmarks (#4642) * [Fix] revise TPInferEngine methods and inference tests * fix llama/bloom infer benchmarks * fix infer tests * trivial fix: benchmakrs * trivial * trivial: rm print * modify utils filename for infer ops test (#4657) * [Infer] Fix TPInferEngine init & inference tests, benchmarks (#4670) * fix engine funcs * TPInferEngine: receive shard config in init * benchmarks: revise TPInferEngine init * benchmarks: remove pytest decorator * trivial fix * use small model for tests * [NFC] use args for infer benchmarks (#4674) * revise infer default (#4683) * [Fix] optimize/shard model in TPInferEngine init (#4684) * remove using orig model in engine * revise inference tests * trivial: rename --------- Co-authored-by: Jianghai <72591262+CjhHa1@users.noreply.github.com> Co-authored-by: Xu Kai <xukai16@foxmail.com> Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com> Co-authored-by: yuehuayingxueluo <867460659@qq.com> Co-authored-by: yuanheng-zhao <jonathan.zhaoyh@gmail.com> Co-authored-by: CjhHa1 <cjh18671720497@outlook.com>
1 year ago
from itertools import accumulate
import pytest
import torch
import torch.nn as nn
from packaging import version
from transformers import BloomConfig, BloomForCausalLM, LlamaConfig, LlamaForCausalLM
from transformers.tokenization_utils_base import BatchEncoding
import colossalai
from colossalai.inference.tensor_parallel import TPInferEngine
from colossalai.inference.tensor_parallel.batch_infer_state import BatchInferState
from colossalai.logging import disable_existing_loggers
from colossalai.shardformer import ShardConfig
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
TP_SIZE = 2
MAX_BATCH_SIZE = 4
MAX_INPUT_LEN = 16
MAX_OUTPUT_LEN = 8
CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse('11.5')
@parameterize('test_config', [{
'tp_size': TP_SIZE,
}])
def run(test_config):
model_config = BloomConfig(num_hidden_layers=4, hidden_size=128, intermediate_size=256, num_attention_heads=4)
model = BloomForCausalLM(model_config)
model = model.half()
model.to(torch.cuda.current_device())
# 1. check TPInferEngine init and model optimization
shard_config = ShardConfig(enable_tensor_parallelism=True if test_config['tp_size'] > 1 else False,
inference_only=True)
infer_engine = TPInferEngine(model, shard_config, MAX_BATCH_SIZE, MAX_INPUT_LEN, MAX_OUTPUT_LEN)
assert infer_engine.cache_manager is not None
assert infer_engine.tp_size == TP_SIZE
assert infer_engine.head_num == model_config.num_attention_heads // TP_SIZE
# 2. check data preparation
input_ids_list = [[80540, 15473, 3331, 11970, 90472, 361, 61335], [80540, 15473, 3331, 11970],
[80540, 15473, 3331, 11970], [80540, 15473]]
batch_size = len(input_ids_list)
max_seq_len = max(len(li) for li in input_ids_list)
attention_mask = [[0] * max_seq_len for _ in range(batch_size)]
for i, li in enumerate(input_ids_list):
attention_mask[i][max_seq_len - len(li):] = [1 for _ in range(len(li))]
data = dict(input_ids=input_ids_list, attention_mask=attention_mask)
inputs_batch_encoding = BatchEncoding(data=data)
seq_lengths = [len(li) for li in input_ids_list]
start_loc = list(accumulate([0] + seq_lengths[:-1]))
seq_lengths = torch.tensor(seq_lengths, dtype=torch.int32)
start_loc = torch.tensor(start_loc, dtype=torch.int32)
# input token id list as inputs
batch_state_out1 = infer_engine.prepare_batch_state(inputs_batch_encoding)
# BatchEncoding as inputs
batch_state_out2 = infer_engine.prepare_batch_state(input_ids_list)
assert batch_state_out1.batch_size == batch_state_out2.batch_size == batch_size
assert torch.equal(batch_state_out1.seq_len, batch_state_out2.seq_len)
# The following tests are discarded for now, and will be reused after all features are added
# assert torch.equal(batch_state_out1.seq_len.to(seq_lengths.device), seq_lengths)
# assert torch.equal(batch_state_out2.seq_len.to(seq_lengths.device), seq_lengths)
# assert torch.equal(batch_state_out1.start_loc.to(start_loc.device), start_loc)
# assert torch.equal(batch_state_out2.start_loc.to(start_loc.device), start_loc)
# 3. check optimized model generate
input_ids = torch.randint(low=10, high=1000, size=(MAX_BATCH_SIZE, MAX_INPUT_LEN))
generate_kwargs = dict(do_sample=False)
infer_engine.generate(input_ids, **generate_kwargs)
torch.cuda.empty_cache()
def check_engine(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run()
@pytest.mark.skipif(not CUDA_SUPPORT, reason="kv-cache manager engine requires cuda version to be higher than 11.5")
@pytest.mark.dist
@rerun_if_address_is_in_use()
@clear_cache_before_run()
def test_engine():
spawn(check_engine, TP_SIZE)
if __name__ == '__main__':
test_engine()