You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/kernel/triton/softmax.py

96 lines
3.8 KiB

[Feature] The first PR to Add TP inference engine, kv-cache manager and related kernels for our inference system (#4577) * [infer] Infer/llama demo (#4503) * add * add infer example * finish * finish * stash * fix * [Kernels] add inference token attention kernel (#4505) * add token forward * fix tests * fix comments * add try import triton * add adapted license * add tests check * [Kernels] add necessary kernels (llama & bloom) for attention forward and kv-cache manager (#4485) * added _vllm_rms_norm * change place * added tests * added tests * modify * adding kernels * added tests: * adding kernels * modify * added * updating kernels * adding tests * added tests * kernel change * submit * modify * added * edit comments * change name * change commnets and fix import * add * added * combine codes (#4509) * [feature] add KV cache manager for llama & bloom inference (#4495) * add kv cache memory manager * add stateinfo during inference * format * format * rename file * add kv cache test * revise on BatchInferState * file dir change * [Bug FIx] import llama context ops fix (#4524) * added _vllm_rms_norm * change place * added tests * added tests * modify * adding kernels * added tests: * adding kernels * modify * added * updating kernels * adding tests * added tests * kernel change * submit * modify * added * edit comments * change name * change commnets and fix import * add * added * fix * add ops into init.py * add * [Infer] Add TPInferEngine and fix file path (#4532) * add engine for TP inference * move file path * update path * fix TPInferEngine * remove unused file * add engine test demo * revise TPInferEngine * fix TPInferEngine, add test * fix * Add Inference test for llama (#4508) * add kv cache memory manager * add stateinfo during inference * add * add infer example * finish * finish * format * format * rename file * add kv cache test * revise on BatchInferState * add inference test for llama * fix conflict * feature: add some new features for llama engine * adapt colossalai triton interface * Change the parent class of llama policy * add nvtx * move llama inference code to tensor_parallel * fix __init__.py * rm tensor_parallel * fix: fix bugs in auto_policy.py * fix:rm some unused codes * mv colossalai/tpinference to colossalai/inference/tensor_parallel * change __init__.py * save change * fix engine * Bug fix: Fix hang * remove llama_infer_engine.py --------- Co-authored-by: yuanheng-zhao <jonathan.zhaoyh@gmail.com> Co-authored-by: CjhHa1 <cjh18671720497@outlook.com> * [infer] Add Bloom inference policy and replaced methods (#4512) * add bloom inference methods and policy * enable pass BatchInferState from model forward * revise bloom infer layers/policies * add engine for inference (draft) * add test for bloom infer * fix bloom infer policy and flow * revise bloom test * fix bloom file path * remove unused codes * fix bloom modeling * fix dir typo * fix trivial * fix policy * clean pr * trivial fix * Revert "[infer] Add Bloom inference policy and replaced methods (#4512)" (#4552) This reverts commit 17cfa5714083a81a505c097f1c411cd28162d922. * [Doc] Add colossal inference doc (#4549) * create readme * add readme.md * fix typos * [infer] Add Bloom inference policy and replaced methods (#4553) * add bloom inference methods and policy * enable pass BatchInferState from model forward * revise bloom infer layers/policies * add engine for inference (draft) * add test for bloom infer * fix bloom infer policy and flow * revise bloom test * fix bloom file path * remove unused codes * fix bloom modeling * fix dir typo * fix trivial * fix policy * clean pr * trivial fix * trivial * Fix Bugs In Llama Model Forward (#4550) * add kv cache memory manager * add stateinfo during inference * add * add infer example * finish * finish * format * format * rename file * add kv cache test * revise on BatchInferState * add inference test for llama * fix conflict * feature: add some new features for llama engine * adapt colossalai triton interface * Change the parent class of llama policy * add nvtx * move llama inference code to tensor_parallel * fix __init__.py * rm tensor_parallel * fix: fix bugs in auto_policy.py * fix:rm some unused codes * mv colossalai/tpinference to colossalai/inference/tensor_parallel * change __init__.py * save change * fix engine * Bug fix: Fix hang * remove llama_infer_engine.py * bug fix: fix bugs about infer_state.is_context_stage * remove pollcies * fix: delete unused code * fix: delete unused code * remove unused coda * fix conflict --------- Co-authored-by: yuanheng-zhao <jonathan.zhaoyh@gmail.com> Co-authored-by: CjhHa1 <cjh18671720497@outlook.com> * [doc] add colossal inference fig (#4554) * create readme * add readme.md * fix typos * upload fig * [NFC] fix docstring for colossal inference (#4555) Fix docstring and comments in kv cache manager and bloom modeling * fix docstring in llama modeling (#4557) * [Infer] check import vllm (#4559) * change import vllm * import apply_rotary_pos_emb * change import location * [DOC] add installation req (#4561) * add installation req * fix * slight change * remove empty * [Feature] rms-norm transfer into inference llama.py (#4563) * add installation req * fix * slight change * remove empty * add rmsnorm polciy * add * clean codes * [infer] Fix tp inference engine (#4564) * fix engine prepare data * add engine test * use bloom for testing * revise on test * revise on test * reset shardformer llama (#4569) * [infer] Fix engine - tensors on different devices (#4570) * fix diff device in engine * [codefactor] Feature/colossal inference (#4579) * code factors * remove * change coding (#4581) * [doc] complete README of colossal inference (#4585) * complete fig * Update README.md * [doc]update readme (#4586) * update readme * Update README.md * bug fix: fix bus in llama and bloom (#4588) * [BUG FIX]Fix test engine in CI and non-vllm kernels llama forward (#4592) * fix tests * clean * clean * fix bugs * add * fix llama non-vllm kernels bug * modify * clean codes * [Kernel]Rmsnorm fix (#4598) * fix tests * clean * clean * fix bugs * add * fix llama non-vllm kernels bug * modify * clean codes * add triton rmsnorm * delete vllm kernel flag * [Bug Fix]Fix bugs in llama (#4601) * fix tests * clean * clean * fix bugs * add * fix llama non-vllm kernels bug * modify * clean codes * bug fix: remove rotary_positions_ids --------- Co-authored-by: cuiqing.li <lixx3527@gmail.com> * [kernel] Add triton layer norm & replace norm for bloom (#4609) * add layernorm for inference * add test for layernorm kernel * add bloom layernorm replacement policy * trivial: path * [Infer] Bug fix rotary embedding in llama (#4608) * fix rotary embedding * delete print * fix init seq len bug * rename pytest * add benchmark for llama * refactor codes * delete useless code * [bench] Add bloom inference benchmark (#4621) * add bloom benchmark * readme - update benchmark res * trivial - uncomment for testing (#4622) * [Infer] add check triton and cuda version for tests (#4627) * fix rotary embedding * delete print * fix init seq len bug * rename pytest * add benchmark for llama * refactor codes * delete useless code * add check triton and cuda * Update sharder.py (#4629) * [Inference] Hot fix some bugs and typos (#4632) * fix * fix test * fix conflicts * [typo]Comments fix (#4633) * fallback * fix commnets * bug fix: fix some bugs in test_llama and test_bloom (#4635) * [Infer] delete benchmark in tests and fix bug for llama and bloom (#4636) * fix rotary embedding * delete print * fix init seq len bug * rename pytest * add benchmark for llama * refactor codes * delete useless code * add check triton and cuda * delete benchmark and fix infer bugs * delete benchmark for tests * delete useless code * delete bechmark function in utils * [Fix] Revise TPInferEngine, inference tests and benchmarks (#4642) * [Fix] revise TPInferEngine methods and inference tests * fix llama/bloom infer benchmarks * fix infer tests * trivial fix: benchmakrs * trivial * trivial: rm print * modify utils filename for infer ops test (#4657) * [Infer] Fix TPInferEngine init & inference tests, benchmarks (#4670) * fix engine funcs * TPInferEngine: receive shard config in init * benchmarks: revise TPInferEngine init * benchmarks: remove pytest decorator * trivial fix * use small model for tests * [NFC] use args for infer benchmarks (#4674) * revise infer default (#4683) * [Fix] optimize/shard model in TPInferEngine init (#4684) * remove using orig model in engine * revise inference tests * trivial: rename --------- Co-authored-by: Jianghai <72591262+CjhHa1@users.noreply.github.com> Co-authored-by: Xu Kai <xukai16@foxmail.com> Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com> Co-authored-by: yuehuayingxueluo <867460659@qq.com> Co-authored-by: yuanheng-zhao <jonathan.zhaoyh@gmail.com> Co-authored-by: CjhHa1 <cjh18671720497@outlook.com>
1 year ago
import torch
try:
import triton
import triton.language as tl
HAS_TRITON = True
except ImportError:
HAS_TRITON = False
print("please install triton from https://github.com/openai/triton")
if HAS_TRITON:
'''
softmax kernel is modified based on
https://github.com/openai/triton/blob/34817ecc954a6f4ca7b4dfb352fdde1f8bd49ca5/python/tutorials/02-fused-softmax.py
'''
@triton.jit
def softmax_kernel(output_ptr, input_ptr, row_stride, n_cols, mask_ptr, BLOCK_SIZE: tl.constexpr):
r""" the kernel function for implementing softmax operator
Args:
output_ptr: the output after finishing softmax operation, (N, hidden_dim)
input_ptr: the tensor of input, shape should be (N, hidden_dim)
n_cols(tl.constexpr): the number of cols of input
BLOCK_SIZE(tl.constexpr): the block_size of your hidden_dim dimension, typically BLOCK_SIZE >= hidden_dim
"""
row_idx = tl.program_id(0)
row_start_ptr = input_ptr + row_idx * row_stride
col_offsets = tl.arange(0, BLOCK_SIZE)
input_ptrs = row_start_ptr + col_offsets
row = tl.load(input_ptrs, mask=col_offsets < n_cols, other=-float('inf')).to(tl.float32)
row_minus_max = row - tl.max(row, axis=0)
if mask_ptr is not None:
# load mask into SRAM
mask_ptrs = (mask_ptr + (row_indx * row_stride)) + col_offsets
mask = tl.load(mask_ptrs, mask=col_offsets < n_cols, other=0).to(tl.float32)
# update
row_minus_max = row_minus_max + mask
numerator = tl.exp(row_minus_max)
denominator = tl.sum(numerator, axis=0)
softmax_output = numerator / denominator
output_row_start_ptr = output_ptr + row_idx * row_stride
output_ptrs = output_row_start_ptr + col_offsets
# Write back output to DRAM
tl.store(output_ptrs, softmax_output, mask=col_offsets < n_cols)
def softmax(input: torch.Tensor, mask: torch.Tensor = None, dim=-1) -> torch.Tensor:
if mask is not None:
assert input[-1] == mask[-1], "the last dimentions should be the same for input and mask"
assert dim == -1 or dim == len(input.shape)-1, "currently softmax layer only support last dimention"
hidden_dim = input.shape[-1]
output = torch.empty_like(input)
input = input.view(-1, hidden_dim)
if mask is not None:
mask = mask.view(-1, hidden_dim)
assert input.shape[0] == mask.shape[0], "the fist dimention of mask and input should be the same"
num_rows, num_cols = input.shape
block_size = max(triton.next_power_of_2(num_cols), 2)
num_warps = 16
if block_size >= 4096:
num_warps = 16
elif block_size >= 2048:
num_warps = 8
else:
num_warps = 4
if num_rows <= 350000:
grid = (num_rows,)
softmax_kernel[grid](output, input, input.stride(0), num_cols, mask, BLOCK_SIZE = block_size, num_warps=num_warps)
else:
grid = lambda meta: ()
grid = lambda meta: (
triton.cdiv(num_rows, meta["BLOCK_M"]),
)
BLOCK_M = 32
if block_size >= 4096:
BLOCK_M = 4
elif block_size >= 2048:
BLOCK_M = 8
softmax_kernel[grid](output_ptr = output,
input_ptr = input,
row_stride = input.stride(0),
n_rows = num_rows,
n_cols = num_cols,
mask_ptr = mask,
# currently manually setting up size
BLOCK_M = 32,
BLOCK_SIZE = block_size)
return output