ColossalAI/colossalai/auto_parallel/solver/op_handler/utils.py

69 lines
2.6 KiB
Python
Raw Normal View History

import torch
from typing import Dict
from colossalai.tensor.sharding_spec import ShardingSpec
from copy import deepcopy
def switch_partition_dim(sharding_spec: ShardingSpec, dim1: int, dim2: int) -> ShardingSpec:
"""
Switch the sharding mesh dimensions for two tensor dimensions. This operation is in-place.
Args:
sharding_spec (ShardingSpec): the sharding spec for which partition dim are switched
dim1 (int): the tensor dimension to switch
dim2 (int): the tensor dimension to switch
"""
assert len(sharding_spec.entire_shape) == 2
dim_partition_dict = sharding_spec.dim_partition_dict
dim1_partition = dim_partition_dict.pop(dim1, None)
dim2_partition = dim_partition_dict.pop(dim2, None)
if dim1_partition:
dim_partition_dict[dim2] = dim1_partition
if dim2_partition:
dim_partition_dict[dim1] = dim2_partition
# re-init the sharding spec
sharding_spec.__init__(sharding_spec.device_mesh, sharding_spec.entire_shape, dim_partition_dict)
return sharding_spec
def update_partition_dim(sharding_spec: ShardingSpec,
dim_mapping: Dict[int, int],
physical_shape: torch.Size,
inplace: bool = False):
"""
This method is used to update the partition dim dict from the logical one to the physical one.
Args:
sharding_spec (ShardingSpec): the sharding spec for which partition dims are updated
dim_mapping (Dict[int, int]): the mapping from the logical tensor dimension to the physical tensor dimension
physical_shape (torch.Size): the physical shape for the tensor
"""
if inplace:
current_sharding_spec = sharding_spec
else:
current_sharding_spec = deepcopy(sharding_spec)
old_dim_partition_dict = current_sharding_spec.dim_partition_dict
new_dim_partition_dict = {}
# assign new dim
for old_dim, new_dim in dim_mapping.items():
mesh_dims = old_dim_partition_dict.pop(old_dim)
new_dim_partition_dict[new_dim] = mesh_dims
for tensor_dim, mesh_dims in old_dim_partition_dict.items():
if tensor_dim in new_dim_partition_dict:
raise KeyError(f"There are duplicated entries for the tensor sharding dimension {tensor_dim}")
else:
new_dim_partition_dict[tensor_dim] = mesh_dims
# update sharding spec
current_sharding_spec.__init__(device_mesh=sharding_spec.device_mesh,
entire_shape=physical_shape,
dim_partition_dict=new_dim_partition_dict)
return current_sharding_spec