ColossalAI/colossalai/auto_parallel/solver/op_handler/dot_handler_v2.py

209 lines
11 KiB
Python
Raw Normal View History

import torch
import torch.nn.functional as F
from colossalai.tensor.sharding_spec import ShardingException
from .node_handler import ModuleHandler, NodeHandler
from ..sharding_strategy import ShardingStrategy_V2, OperationDataType, OperationData
from ..strategy import LinearProjectionStrategyGenerator, StrategyGenerator_V2, BatchedMatMulStrategyGenerator
from typing import List, Dict, Union
from .registry import operator_registry
from copy import deepcopy
from .utils import switch_partition_dim, update_partition_dim
__all__ = ['LinearModuleHandler', 'LinearFunctionHandler', 'BMMFunctionHandler']
@operator_registry.register(torch.nn.Linear)
class LinearModuleHandler(ModuleHandler):
"""
A LinearModuleHandler which deals with the sharding strategies for nn.Linear module.
"""
def get_strategy_generator(self) -> List[StrategyGenerator_V2]:
op_data_mapping = self.get_operation_data_mapping()
generators = []
generators.append(LinearProjectionStrategyGenerator(op_data_mapping, self.device_mesh))
return generators
def get_operation_data_mapping(self) -> Dict[str, OperationData]:
# use transposed shape for strategies
# the strategies will be transformed back to its original shape in self.post_process
input_meta_data = self.node.args[0]._meta_data
input_logical_shape = input_meta_data.view(-1, input_meta_data.shape[-1]).shape
physical_input_operand = OperationData(name=str(self.node.args[0]),
type=OperationDataType.ARG,
data=input_meta_data,
logical_shape=input_logical_shape)
physical_other_operand = OperationData(name="weight",
type=OperationDataType.PARAM,
data=self.named_parameters['weight'],
logical_shape=self.named_parameters['weight'].shape[::-1])
output_meta_data = self.node._meta_data
output_logical_shape = output_meta_data.view(-1, output_meta_data.shape[-1]).shape
physical_output = OperationData(name=str(self.node),
type=OperationDataType.OUTPUT,
data=output_meta_data,
logical_shape=output_logical_shape)
mapping = {"input": physical_input_operand, "other": physical_other_operand, "output": physical_output}
if self.named_parameters['bias'] is not None:
physical_bias_operand = OperationData(name="bias",
type=OperationDataType.PARAM,
data=self.named_parameters['bias'])
mapping['bias'] = physical_bias_operand
return mapping
def post_process(self, strategy: ShardingStrategy_V2) -> Union[ShardingStrategy_V2, List[ShardingStrategy_V2]]:
"""
Convert the sharding spec from the logical shape to the physical shape.
"""
# switch the dimensions of the transposed weight
for op_data, sharding_spec in strategy.input_sharding_specs.items():
if op_data.name == "weight":
assert op_data.logical_shape != op_data.data.shape
switch_partition_dim(sharding_spec, 0, -1)
# create multiple sharding strategies for the inputs
# as input can be multi-dimensinal and the partition dim is only 2D,
# we need to map the partition at dim 0 to one of the first few dimensions of the input
sharding_strategies = []
input_op_data = strategy.get_op_data_by_name(str(self.node.args[0]))
output_op_data = strategy.get_op_data_by_name(str(self.node))
num_input_dims = input_op_data.data.dim()
input_sharding_spec = strategy.get_sharding_spec_by_name(input_op_data.name)
if 0 in input_sharding_spec.dim_partition_dict:
for i in range(num_input_dims - 1):
new_strategy = strategy.clone()
input_sharding_spec = new_strategy.get_sharding_spec_by_name(input_op_data.name)
output_sharding_spec = new_strategy.get_sharding_spec_by_name(output_op_data.name)
try:
update_partition_dim(sharding_spec=input_sharding_spec,
dim_mapping={0: i},
physical_shape=input_op_data.data.shape,
inplace=True)
update_partition_dim(sharding_spec=output_sharding_spec,
dim_mapping={0: i},
physical_shape=output_op_data.data.shape,
inplace=True)
sharding_strategies.append(new_strategy)
except ShardingException:
pass
else:
sharding_strategies.append(strategy)
return sharding_strategies
@operator_registry.register(F.linear)
class LinearFunctionHandler(NodeHandler):
"""
A LinearModuleHandler which deals with the sharding strategies for nn.Linear module.
"""
def get_strategy_generator(self) -> List[StrategyGenerator_V2]:
op_data_mapping = self.get_operation_data_mapping()
generators = []
generators.append(LinearProjectionStrategyGenerator(op_data_mapping, self.device_mesh))
return generators
def get_operation_data_mapping(self) -> Dict[str, OperationData]:
# use transposed shape for strategies
# the strategies will be transformed back to its original shape in self.post_process
physical_input_operand = OperationData(name=str(self.node.args[0]),
type=OperationDataType.ARG,
data=self.node.args[0]._meta_data)
# check if the other operand is a parameter
if isinstance(self.node.args[1]._meta_data, torch.nn.parameter.Parameter):
data_type = OperationDataType.PARAM
else:
data_type = OperationDataType.ARG
physical_other_operand = OperationData(name=str(self.node.args[1]),
type=data_type,
data=self.node.args[1]._meta_data,
logical_shape=self.node.args[1]._meta_data.shape[::-1])
physical_output = OperationData(name=str(self.node), type=OperationDataType.OUTPUT, data=self.node._meta_data)
mapping = {"input": physical_input_operand, "other": physical_other_operand, "output": physical_output}
if self.node.args[2] is not None:
# check if the other operand is a parameter
if isinstance(self.node.args[2]._meta_data, torch.nn.parameter.Parameter):
data_type = OperationDataType.PARAM
else:
data_type = OperationDataType.ARG
physical_bias_operand = OperationData(name=str(self.node.args[2]),
type=data_type,
data=self.node.args[2]._meta_data)
mapping['bias'] = physical_bias_operand
return mapping
def post_process(self, strategy: ShardingStrategy_V2):
"""
Convert the sharding spec of the weight parameter back to its original shape.
"""
for op_data, sharding_spec in strategy.input_sharding_specs.items():
if op_data.name == str(self.node.args[1]):
assert op_data.logical_shape != op_data.data.shape
switch_partition_dim(sharding_spec, 0, -1)
# create multiple sharding strategies for the inputs
# as input can be multi-dimensinal and the partition dim is only 2D,
# we need to map the partition at dim 0 to one of the first few dimensions of the input
sharding_strategies = []
input_op_data = strategy.get_op_data_by_name(str(self.node.args[0]))
output_op_data = strategy.get_op_data_by_name(str(self.node))
num_input_dims = input_op_data.data.dim()
input_sharding_spec = strategy.get_sharding_spec_by_name(input_op_data.name)
if 0 in input_sharding_spec.dim_partition_dict:
for i in range(num_input_dims - 1):
new_strategy = strategy.clone()
input_sharding_spec = new_strategy.get_sharding_spec_by_name(input_op_data.name)
output_sharding_spec = new_strategy.get_sharding_spec_by_name(output_op_data.name)
try:
update_partition_dim(sharding_spec=input_sharding_spec,
dim_mapping={0: i},
physical_shape=input_op_data.data.shape,
inplace=True)
update_partition_dim(sharding_spec=output_sharding_spec,
dim_mapping={0: i},
physical_shape=output_op_data.data.shape,
inplace=True)
sharding_strategies.append(new_strategy)
except ShardingException:
pass
else:
sharding_strategies.append(strategy)
return strategy
@operator_registry.register(torch.bmm)
@operator_registry.register(torch.Tensor.bmm)
class BMMFunctionHandler(NodeHandler):
def get_operation_data_mapping(self) -> Dict[str, OperationData]:
# use transposed shape for strategies
# the strategies will be transformed back to its original shape in self.post_process
physical_input_operand = OperationData(name=str(self.node.args[0]),
type=OperationDataType.ARG,
data=self.node.args[0]._meta_data)
physical_other_operand = OperationData(name=str(self.node.args[1]),
type=OperationDataType.ARG,
data=self.node.args[1]._meta_data)
physical_output = OperationData(name=str(self.node), type=OperationDataType.OUTPUT, data=self.node._meta_data)
mapping = {"input": physical_input_operand, "other": physical_other_operand, "output": physical_output}
return mapping
def get_strategy_generator(self) -> List[StrategyGenerator_V2]:
generators = []
op_data_mapping = self.get_operation_data_mapping()
generators = []
generators.append(BatchedMatMulStrategyGenerator(op_data_mapping, self.device_mesh))
return generators