mirror of https://github.com/hpcaitech/ColossalAI
59 lines
2.3 KiB
Python
59 lines
2.3 KiB
Python
|
import torch
|
||
|
import transformers
|
||
|
|
||
|
from colossalai.shardformer.modeling.chatglm2_6b.configuration_chatglm import ChatGLMConfig
|
||
|
from colossalai.shardformer.modeling.chatglm2_6b.modeling_chatglm import ChatGLMForConditionalGeneration, ChatGLMModel
|
||
|
|
||
|
from ..registry import ModelAttribute, model_zoo
|
||
|
|
||
|
# ================================
|
||
|
# Register single-sentence ChatGLM
|
||
|
# ================================
|
||
|
|
||
|
|
||
|
def data_gen():
|
||
|
input_ids = torch.tensor([[5941, 15, 2670, 3543, 632, 2075]], dtype=torch.int64)
|
||
|
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1]])
|
||
|
return dict(input_ids=input_ids, attention_mask=attention_mask)
|
||
|
|
||
|
|
||
|
def data_gen_for_conditional_generation():
|
||
|
# token classification data gen
|
||
|
# `labels` is the type not the token id for token classification, 0 or 1
|
||
|
data = data_gen()
|
||
|
labels = data['input_ids'].clone()
|
||
|
data['labels'] = labels
|
||
|
return data
|
||
|
|
||
|
|
||
|
# define output transform function
|
||
|
output_transform_fn = lambda x: x
|
||
|
|
||
|
# define loss function
|
||
|
loss_fn_for_chatglm_model = lambda x: torch.nn.functional.mse_loss(x.last_hidden_state,
|
||
|
torch.ones_like(x.last_hidden_state))
|
||
|
loss_fn = lambda x: x.loss
|
||
|
|
||
|
config = ChatGLMConfig(num_layers=2,
|
||
|
padded_vocab_size=65024,
|
||
|
hidden_size=64,
|
||
|
num_attention_heads=8,
|
||
|
rmsnorm=True,
|
||
|
original_rope=True,
|
||
|
use_cache=True,
|
||
|
torch_dtype=torch.float32)
|
||
|
|
||
|
model_zoo.register(name='transformers_chatglm',
|
||
|
model_fn=lambda: ChatGLMModel(config, empty_init=False),
|
||
|
data_gen_fn=data_gen,
|
||
|
output_transform_fn=output_transform_fn,
|
||
|
loss_fn=loss_fn_for_chatglm_model,
|
||
|
model_attribute=ModelAttribute(has_control_flow=True))
|
||
|
|
||
|
model_zoo.register(name="transformers_chatglm_for_conditional_generation",
|
||
|
model_fn=lambda: ChatGLMForConditionalGeneration(config, empty_init=False),
|
||
|
data_gen_fn=data_gen_for_conditional_generation,
|
||
|
output_transform_fn=output_transform_fn,
|
||
|
loss_fn=loss_fn,
|
||
|
model_attribute=ModelAttribute(has_control_flow=True))
|