mirror of https://github.com/hpcaitech/ColossalAI
[shardformer] rewrite tests for opt/bloom/llama/vit/chatglm (#4395)
* rewrite opt tests * rewrite llama tests * rewrite bloom & vit tests * rewrite chatglm tests * fix LinearCol for classfiers * add judge for other tp layers, fix lazy init in utilpull/4445/head
parent
21e0a42fd1
commit
7711bd524a
|
@ -143,6 +143,14 @@ class Linear1D_Col(ParallelModule):
|
|||
f'Expected only one process group, got {len(process_group)}.'
|
||||
process_group = process_group[0]
|
||||
|
||||
tp_size = dist.get_world_size(process_group)
|
||||
if out_features < tp_size:
|
||||
return module
|
||||
|
||||
if out_features % tp_size != 0:
|
||||
raise ValueError(
|
||||
f"The size of out_features:{out_features} is not integer multiples of tensor parallel size: {tp_size}!")
|
||||
|
||||
linear_1d = Linear1D_Col(in_features=in_features,
|
||||
out_features=out_features,
|
||||
bias=bias,
|
||||
|
@ -293,6 +301,14 @@ class Linear1D_Row(ParallelModule):
|
|||
f'Expected only one process group, got {len(process_group)}.'
|
||||
process_group = process_group[0]
|
||||
|
||||
tp_size = dist.get_world_size(process_group)
|
||||
if in_features < tp_size:
|
||||
return module
|
||||
|
||||
if in_features % tp_size != 0:
|
||||
raise ValueError(
|
||||
f"The size of in_features:{in_features} is not integer multiples of tensor parallel size: {tp_size}!")
|
||||
|
||||
linear_1d = Linear1D_Row(in_features=in_features,
|
||||
out_features=out_features,
|
||||
bias=bias,
|
||||
|
|
|
@ -265,6 +265,14 @@ class GPT2FusedLinearConv1D_Col(ParallelModule):
|
|||
f'Expected only one process group, got {len(process_group)}.'
|
||||
process_group = process_group[0]
|
||||
|
||||
tp_size = dist.get_world_size(process_group)
|
||||
if out_features < tp_size:
|
||||
return module
|
||||
|
||||
if out_features % tp_size != 0:
|
||||
raise ValueError(
|
||||
f"The size of out_features:{out_features} is not integer multiples of tensor parallel size: {tp_size}!")
|
||||
|
||||
linear_1d = GPT2FusedLinearConv1D_Col(in_features=in_features,
|
||||
out_features=out_features,
|
||||
bias=bias,
|
||||
|
@ -420,6 +428,14 @@ class GPT2FusedLinearConv1D_Row(ParallelModule):
|
|||
f'Expected only one process group, got {len(process_group)}.'
|
||||
process_group = process_group[0]
|
||||
|
||||
tp_size = dist.get_world_size(process_group)
|
||||
if in_features < tp_size:
|
||||
return module
|
||||
|
||||
if in_features % tp_size != 0:
|
||||
raise ValueError(
|
||||
f"The size of in_features:{in_features} is not integer multiples of tensor parallel size: {tp_size}!")
|
||||
|
||||
linear_1d = GPT2FusedLinearConv1D_Row(in_features=in_features,
|
||||
out_features=out_features,
|
||||
bias=bias,
|
||||
|
|
|
@ -1,7 +1,500 @@
|
|||
from typing import Optional, Tuple
|
||||
import random
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
||||
from transformers.modeling_outputs import (
|
||||
BaseModelOutputWithPast,
|
||||
CausalLMOutputWithPast,
|
||||
QuestionAnsweringModelOutput,
|
||||
SequenceClassifierOutputWithPast,
|
||||
)
|
||||
from transformers.models.opt.modeling_opt import (
|
||||
OPTForCausalLM,
|
||||
OPTForQuestionAnswering,
|
||||
OPTForSequenceClassification,
|
||||
OPTModel,
|
||||
)
|
||||
from transformers.utils import logging
|
||||
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
|
||||
|
||||
class OPTPipelineForwards:
|
||||
'''
|
||||
This class serves as a micro library for forward function substitution of OPT models
|
||||
under pipeline setting.
|
||||
'''
|
||||
|
||||
@staticmethod
|
||||
def _prepare_decoder_attention_mask(attention_mask, input_shape, _dtype, device, past_key_values_length):
|
||||
# create causal mask
|
||||
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
||||
from transformers.models.opt.modeling_opt import _make_causal_mask
|
||||
combined_attention_mask = None
|
||||
if input_shape[-1] > 1:
|
||||
combined_attention_mask = _make_causal_mask(
|
||||
input_shape,
|
||||
_dtype,
|
||||
device,
|
||||
past_key_values_length=past_key_values_length,
|
||||
)
|
||||
|
||||
if attention_mask is not None:
|
||||
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
||||
expanded_attn_mask = OPTPipelineForwards._expand_mask(attention_mask, _dtype,
|
||||
tgt_len=input_shape[-1]).to(device)
|
||||
combined_attention_mask = (expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask +
|
||||
combined_attention_mask)
|
||||
|
||||
return combined_attention_mask
|
||||
|
||||
@staticmethod
|
||||
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
||||
"""
|
||||
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
||||
"""
|
||||
bsz, src_len = mask.size()
|
||||
tgt_len = tgt_len if tgt_len is not None else src_len
|
||||
|
||||
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
||||
|
||||
inverted_mask = 1.0 - expanded_mask
|
||||
|
||||
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
||||
|
||||
@staticmethod
|
||||
def opt_model_forward(
|
||||
self: OPTModel,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None,
|
||||
stage_index: Optional[List[int]] = None,
|
||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||
'''
|
||||
This forward method is modified based on transformers.models.opt.modeling_opt.OPTModel.forward
|
||||
'''
|
||||
|
||||
from transformers.modeling_outputs import BaseModelOutputWithPast
|
||||
from transformers.utils import logging
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (output_hidden_states
|
||||
if output_hidden_states is not None else self.config.output_hidden_states)
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
decoder = self.decoder
|
||||
if stage_manager.is_first_stage():
|
||||
# retrieve input_ids and inputs_embeds
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
input_shape = input_ids.size()
|
||||
input_ids = input_ids.view(-1, input_shape[-1])
|
||||
elif inputs_embeds is not None:
|
||||
input_shape = inputs_embeds.size()[:-1]
|
||||
else:
|
||||
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
||||
|
||||
batch_size, seq_length = input_shape
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = decoder.embed_tokens(input_ids)
|
||||
|
||||
if decoder.project_in is not None:
|
||||
inputs_embeds = decoder.project_in(inputs_embeds)
|
||||
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||||
_dtype = inputs_embeds.dtype
|
||||
|
||||
else:
|
||||
if hidden_states is None:
|
||||
raise ValueError("hidden_states shouln't be None for intermediate stages.")
|
||||
input_shape = hidden_states.size()[:-1]
|
||||
batch_size, seq_length = input_shape[0], input_shape[1]
|
||||
device = hidden_states.device
|
||||
_dtype = hidden_states.dtype
|
||||
|
||||
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
||||
# required mask seq length can be calculated via length of past
|
||||
mask_seq_length = past_key_values_length + seq_length
|
||||
# embed positions
|
||||
if attention_mask is None:
|
||||
attention_mask = torch.ones(batch_size, mask_seq_length, device=device)
|
||||
elif attention_mask.shape[1] != mask_seq_length:
|
||||
raise ValueError(
|
||||
f"The provided attention mask has length {attention_mask.shape[1]}, but its length should be "
|
||||
f"{mask_seq_length} (sum of the lengths of current and past inputs)")
|
||||
|
||||
causal_attention_mask = OPTPipelineForwards._prepare_decoder_attention_mask(attention_mask, input_shape, _dtype,
|
||||
device, past_key_values_length)
|
||||
|
||||
if stage_manager.is_first_stage():
|
||||
pos_embeds = decoder.embed_positions(attention_mask, past_key_values_length)
|
||||
hidden_states = inputs_embeds + pos_embeds
|
||||
|
||||
if decoder.gradient_checkpointing and decoder.training:
|
||||
if use_cache:
|
||||
logger.warning_once(
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
|
||||
use_cache = False
|
||||
|
||||
# TODO: left the recording kv-value tensors as () or None type, this feature may be added in the future.
|
||||
if past_key_values:
|
||||
logger.warning_once('Non-empty past_key_values is not supported for pipeline models at the moment.')
|
||||
past_key_values = None
|
||||
if output_attentions:
|
||||
logger.warning_once('output_attentions=True is not supported for pipeline models at the moment.')
|
||||
output_attentions = False
|
||||
if output_hidden_states:
|
||||
logger.warning_once('output_hidden_states=True is not supported for pipeline models at the moment.')
|
||||
output_hidden_states = False
|
||||
if use_cache:
|
||||
logger.warning_once('use_cache=True is not supported for pipeline models at the moment.')
|
||||
use_cache = False
|
||||
|
||||
# decoder layers
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_self_attns = () if output_attentions else None
|
||||
next_decoder_cache = () if use_cache else None
|
||||
|
||||
# check if head_mask has a correct number of layers specified if desired
|
||||
for attn_mask, mask_name in zip([head_mask], ["head_mask"]):
|
||||
if attn_mask is not None:
|
||||
if attn_mask.size()[0] != (len(decoder.layers)):
|
||||
raise ValueError(
|
||||
f"The `{mask_name}` should be specified for {len(decoder.layers)} layers, but it is for"
|
||||
f" {head_mask.size()[0]}.")
|
||||
|
||||
start_idx, end_idx = stage_index[0], stage_index[1]
|
||||
|
||||
torch.cuda.set_device(device)
|
||||
|
||||
for idx in range(start_idx, end_idx):
|
||||
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
||||
decoder_layer = decoder.layers[idx]
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
dropout_probability = random.uniform(0, 1)
|
||||
if decoder.training and (dropout_probability < decoder.layerdrop):
|
||||
continue
|
||||
|
||||
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
||||
|
||||
if decoder.gradient_checkpointing and decoder.training:
|
||||
|
||||
def create_custom_forward(module):
|
||||
|
||||
def custom_forward(*inputs):
|
||||
# None for past_key_value
|
||||
return module(*inputs, output_attentions, None)
|
||||
|
||||
return custom_forward
|
||||
|
||||
layer_outputs = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(decoder_layer),
|
||||
hidden_states,
|
||||
causal_attention_mask,
|
||||
head_mask[idx] if head_mask is not None else None,
|
||||
None,
|
||||
)
|
||||
else:
|
||||
layer_outputs = decoder_layer(
|
||||
hidden_states,
|
||||
attention_mask=causal_attention_mask,
|
||||
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
||||
past_key_value=past_key_value,
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
|
||||
if use_cache:
|
||||
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
||||
|
||||
if output_attentions:
|
||||
all_self_attns += (layer_outputs[1],)
|
||||
|
||||
if stage_manager.is_last_stage():
|
||||
if decoder.final_layer_norm is not None:
|
||||
hidden_states = decoder.final_layer_norm(hidden_states)
|
||||
if decoder.project_out is not None:
|
||||
hidden_states = decoder.project_out(hidden_states)
|
||||
|
||||
# add hidden states from the last decoder layer
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
next_cache = next_decoder_cache if use_cache else None
|
||||
|
||||
if stage_manager.is_last_stage():
|
||||
if not return_dict:
|
||||
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
||||
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=next_cache,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attns,
|
||||
)
|
||||
else:
|
||||
return {'hidden_states': hidden_states}
|
||||
|
||||
@staticmethod
|
||||
def opt_for_causal_lm_forward(
|
||||
self: OPTForCausalLM,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None,
|
||||
stage_index: Optional[List[int]] = None,
|
||||
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||||
r"""
|
||||
This function is modified on the basis of transformers.models.opt.modeling_opt.OPTForCausalLM.forward.
|
||||
Please refer to original code of transformers for more details.
|
||||
"""
|
||||
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (output_hidden_states
|
||||
if output_hidden_states is not None else self.config.output_hidden_states)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
||||
outputs = OPTPipelineForwards.opt_model_forward(
|
||||
self.model,
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
head_mask=head_mask,
|
||||
past_key_values=past_key_values,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
stage_manager=stage_manager,
|
||||
hidden_states=hidden_states,
|
||||
stage_index=stage_index,
|
||||
)
|
||||
if stage_manager.is_last_stage():
|
||||
logits = self.lm_head(outputs[0]).contiguous()
|
||||
loss = None
|
||||
if labels is not None:
|
||||
# move labels to correct device to enable model parallelism
|
||||
labels = labels.to(logits.device)
|
||||
# Shift so that tokens < n predict n
|
||||
shift_logits = logits[..., :-1, :].contiguous()
|
||||
shift_labels = labels[..., 1:].contiguous()
|
||||
# Flatten the tokens
|
||||
loss_fct = CrossEntropyLoss()
|
||||
loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1))
|
||||
if not return_dict:
|
||||
output = (logits,) + outputs[1:]
|
||||
return (loss,) + output if loss is not None else output
|
||||
|
||||
return CausalLMOutputWithPast(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
past_key_values=outputs.past_key_values,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
)
|
||||
else:
|
||||
hidden_states = outputs.get('hidden_states')
|
||||
return {'hidden_states': hidden_states}
|
||||
|
||||
@staticmethod
|
||||
def opt_for_sequence_classification_forward(
|
||||
self: OPTForSequenceClassification,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None,
|
||||
stage_index: Optional[List[int]] = None,
|
||||
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
||||
r"""
|
||||
This function is modified on the basis of transformers.models.opt.modeling_opt.OPTForSequenceClassification.forward.
|
||||
Please refer to original code of transformers for more details.
|
||||
"""
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
transformer_outputs = OPTPipelineForwards.opt_model_forward(self.model,
|
||||
input_ids,
|
||||
past_key_values=past_key_values,
|
||||
attention_mask=attention_mask,
|
||||
head_mask=head_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
stage_manager=stage_manager,
|
||||
hidden_states=hidden_states,
|
||||
stage_index=stage_index)
|
||||
|
||||
if stage_manager.is_last_stage():
|
||||
hidden_states = transformer_outputs[0]
|
||||
logits = self.score(hidden_states)
|
||||
|
||||
batch_size = input_ids.shape[0] if input_ids is not None else hidden_states.shape[0]
|
||||
|
||||
if self.config.pad_token_id is None:
|
||||
sequence_lengths = -1
|
||||
else:
|
||||
if input_ids is not None:
|
||||
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
|
||||
else:
|
||||
sequence_lengths = -1
|
||||
logger.warning(
|
||||
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
||||
"unexpected if using padding tokens in conjunction with `inputs_embeds.`")
|
||||
|
||||
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
if self.config.problem_type is None:
|
||||
if self.num_labels == 1:
|
||||
self.config.problem_type = "regression"
|
||||
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
||||
self.config.problem_type = "single_label_classification"
|
||||
else:
|
||||
self.config.problem_type = "multi_label_classification"
|
||||
|
||||
if self.config.problem_type == "regression":
|
||||
loss_fct = MSELoss()
|
||||
if self.num_labels == 1:
|
||||
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
||||
else:
|
||||
loss = loss_fct(pooled_logits, labels)
|
||||
elif self.config.problem_type == "single_label_classification":
|
||||
loss_fct = CrossEntropyLoss()
|
||||
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
||||
elif self.config.problem_type == "multi_label_classification":
|
||||
loss_fct = BCEWithLogitsLoss()
|
||||
loss = loss_fct(pooled_logits, labels)
|
||||
|
||||
if not return_dict:
|
||||
output = (pooled_logits,) + transformer_outputs[1:]
|
||||
return ((loss,) + output) if loss is not None else output
|
||||
|
||||
return SequenceClassifierOutputWithPast(
|
||||
loss=loss,
|
||||
logits=pooled_logits,
|
||||
past_key_values=transformer_outputs.past_key_values,
|
||||
hidden_states=transformer_outputs.hidden_states,
|
||||
attentions=transformer_outputs.attentions,
|
||||
)
|
||||
else:
|
||||
hidden_states = transformer_outputs.get('hidden_states')
|
||||
return {'hidden_states': hidden_states}
|
||||
|
||||
@staticmethod
|
||||
def opt_for_question_answering_forward(
|
||||
self: OPTForQuestionAnswering,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
start_positions: Optional[torch.LongTensor] = None,
|
||||
end_positions: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None,
|
||||
stage_index: Optional[List[int]] = None,
|
||||
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
||||
r"""
|
||||
This function is modified on the basis of transformers.models.opt.modeling_opt.OPTForQuestionAnswering.forward.
|
||||
Please refer to original code of transformers for more details.
|
||||
"""
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
transformer_outputs = OPTPipelineForwards.opt_model_forward(self.model,
|
||||
input_ids,
|
||||
past_key_values=past_key_values,
|
||||
attention_mask=attention_mask,
|
||||
head_mask=head_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
stage_manager=stage_manager,
|
||||
hidden_states=hidden_states,
|
||||
stage_index=stage_index)
|
||||
if stage_manager.is_last_stage():
|
||||
hidden_states = transformer_outputs[0]
|
||||
|
||||
logits = self.qa_outputs(hidden_states)
|
||||
start_logits, end_logits = logits.split(1, dim=-1)
|
||||
start_logits = start_logits.squeeze(-1).contiguous()
|
||||
end_logits = end_logits.squeeze(-1).contiguous()
|
||||
|
||||
total_loss = None
|
||||
if start_positions is not None and end_positions is not None:
|
||||
# If we are on multi-GPU, split add a dimension
|
||||
if len(start_positions.size()) > 1:
|
||||
start_positions = start_positions.squeeze(-1)
|
||||
if len(end_positions.size()) > 1:
|
||||
end_positions = end_positions.squeeze(-1)
|
||||
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
||||
ignored_index = start_logits.size(1)
|
||||
start_positions = start_positions.clamp(0, ignored_index)
|
||||
end_positions = end_positions.clamp(0, ignored_index)
|
||||
|
||||
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
||||
start_loss = loss_fct(start_logits, start_positions)
|
||||
end_loss = loss_fct(end_logits, end_positions)
|
||||
total_loss = (start_loss + end_loss) / 2
|
||||
|
||||
if not return_dict:
|
||||
output = (start_logits, end_logits) + transformer_outputs[2:]
|
||||
return ((total_loss,) + output) if total_loss is not None else output
|
||||
|
||||
return QuestionAnsweringModelOutput(
|
||||
loss=total_loss,
|
||||
start_logits=start_logits,
|
||||
end_logits=end_logits,
|
||||
hidden_states=transformer_outputs.hidden_states,
|
||||
attentions=transformer_outputs.attentions,
|
||||
)
|
||||
else:
|
||||
hidden_states = transformer_outputs.get('hidden_states')
|
||||
return {'hidden_states': hidden_states}
|
||||
|
||||
|
||||
def get_opt_flash_attention_forward():
|
||||
|
|
|
@ -122,6 +122,12 @@ _POLICY_LIST = {
|
|||
PolicyLocation(file_name="blip2", class_name="Blip2ModelPolicy"),
|
||||
"transformers.models.blip_2.modeling_blip_2.Blip2ForConditionalGeneration":
|
||||
PolicyLocation(file_name="blip2", class_name="Blip2ForConditionalGenerationPolicy"),
|
||||
|
||||
# ChatGLM
|
||||
"colossalai.shardformer.modeling.chatglm2_6b.modeling_chatglm.ChatGLMModel":
|
||||
PolicyLocation(file_name="chatglm", class_name="ChatGLMModelPolicy"),
|
||||
"colossalai.shardformer.modeling.chatglm2_6b.modeling_chatglm.ChatGLMForConditionalGeneration":
|
||||
PolicyLocation(file_name="chatglm", class_name="ChatGLMForConditionalGenerationPolicy"),
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -1,32 +1,14 @@
|
|||
import logging
|
||||
import random
|
||||
from functools import partial
|
||||
from types import MethodType
|
||||
from typing import Callable, Dict, List, Optional, Tuple, Union
|
||||
from typing import Callable, Dict, List
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch import Tensor, nn
|
||||
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
||||
from transformers.modeling_outputs import (
|
||||
BaseModelOutputWithPast,
|
||||
CausalLMOutputWithPast,
|
||||
QuestionAnsweringModelOutput,
|
||||
SequenceClassifierOutputWithPast,
|
||||
)
|
||||
from transformers.models.opt.modeling_opt import (
|
||||
OPTForCausalLM,
|
||||
OPTForQuestionAnswering,
|
||||
OPTForSequenceClassification,
|
||||
OPTModel,
|
||||
)
|
||||
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
from colossalai.shardformer.layer import FusedLayerNorm, Linear1D_Col, Linear1D_Row, VocabParallelEmbedding1D
|
||||
|
||||
from .._utils import getattr_, setattr_
|
||||
from .._utils import getattr_
|
||||
from ..modeling.jit import get_jit_fused_dropout_add_func
|
||||
from ..modeling.opt import get_jit_fused_opt_decoder_layer_forward, get_opt_flash_attention_forward
|
||||
from ..modeling.opt import OPTPipelineForwards, get_jit_fused_opt_decoder_layer_forward, get_opt_flash_attention_forward
|
||||
from .base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
|
||||
|
||||
__all__ = [
|
||||
|
@ -228,6 +210,7 @@ class OPTForCausalLMPolicy(OPTPolicy):
|
|||
num_stages = self.pipeline_stage_manager.num_stages
|
||||
if id(opt_model.model.decoder.embed_tokens.weight) == id(opt_model.lm_head.weight):
|
||||
return [{0: opt_model.model.decoder.embed_tokens.weight, num_stages - 1: opt_model.lm_head.weight}]
|
||||
return []
|
||||
|
||||
def postprocess(self):
|
||||
if self.shard_config.enable_tensor_parallelism and self.pipeline_stage_manager is None:
|
||||
|
@ -295,594 +278,3 @@ class OPTForQuestionAnsweringPolicy(OPTPolicy):
|
|||
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
||||
"no shared params in OPTForSequenceClassification"
|
||||
return []
|
||||
|
||||
|
||||
class OPTPipelineForwards:
|
||||
'''
|
||||
This class serves as a micro library for forward function substitution of OPT models
|
||||
under pipeline setting.
|
||||
'''
|
||||
|
||||
@staticmethod
|
||||
def _prepare_decoder_attention_mask(attention_mask, input_shape, _dtype, device, past_key_values_length):
|
||||
# create causal mask
|
||||
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
||||
from transformers.models.opt.modeling_opt import _make_causal_mask
|
||||
combined_attention_mask = None
|
||||
if input_shape[-1] > 1:
|
||||
combined_attention_mask = _make_causal_mask(
|
||||
input_shape,
|
||||
_dtype,
|
||||
device,
|
||||
past_key_values_length=past_key_values_length,
|
||||
)
|
||||
|
||||
if attention_mask is not None:
|
||||
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
||||
expanded_attn_mask = OPTPipelineForwards._expand_mask(attention_mask, _dtype,
|
||||
tgt_len=input_shape[-1]).to(device)
|
||||
combined_attention_mask = (expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask +
|
||||
combined_attention_mask)
|
||||
|
||||
return combined_attention_mask
|
||||
|
||||
@staticmethod
|
||||
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
||||
"""
|
||||
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
||||
"""
|
||||
bsz, src_len = mask.size()
|
||||
tgt_len = tgt_len if tgt_len is not None else src_len
|
||||
|
||||
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
||||
|
||||
inverted_mask = 1.0 - expanded_mask
|
||||
|
||||
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
||||
|
||||
@staticmethod
|
||||
def opt_model_forward(
|
||||
self: OPTModel,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None,
|
||||
stage_index: Optional[List[int]] = None,
|
||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||
'''
|
||||
This forward method is modified based on transformers.models.opt.modeling_opt.OPTModel.forward
|
||||
'''
|
||||
|
||||
from transformers.modeling_outputs import BaseModelOutputWithPast
|
||||
from transformers.utils import logging
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (output_hidden_states
|
||||
if output_hidden_states is not None else self.config.output_hidden_states)
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
decoder = self.decoder
|
||||
if stage_manager.is_first_stage():
|
||||
# retrieve input_ids and inputs_embeds
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
input_shape = input_ids.size()
|
||||
input_ids = input_ids.view(-1, input_shape[-1])
|
||||
elif inputs_embeds is not None:
|
||||
input_shape = inputs_embeds.size()[:-1]
|
||||
else:
|
||||
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
||||
|
||||
batch_size, seq_length = input_shape
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = decoder.embed_tokens(input_ids)
|
||||
|
||||
if decoder.project_in is not None:
|
||||
inputs_embeds = decoder.project_in(inputs_embeds)
|
||||
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||||
_dtype = inputs_embeds.dtype
|
||||
|
||||
else:
|
||||
if hidden_states is None:
|
||||
raise ValueError("hidden_states shouln't be None for intermediate stages.")
|
||||
input_shape = hidden_states.size()[:-1]
|
||||
batch_size, seq_length = input_shape[0], input_shape[1]
|
||||
device = hidden_states.device
|
||||
_dtype = hidden_states.dtype
|
||||
|
||||
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
||||
# required mask seq length can be calculated via length of past
|
||||
mask_seq_length = past_key_values_length + seq_length
|
||||
# embed positions
|
||||
if attention_mask is None:
|
||||
attention_mask = torch.ones(batch_size, mask_seq_length, device=device)
|
||||
elif attention_mask.shape[1] != mask_seq_length:
|
||||
raise ValueError(
|
||||
f"The provided attention mask has length {attention_mask.shape[1]}, but its length should be "
|
||||
f"{mask_seq_length} (sum of the lengths of current and past inputs)")
|
||||
|
||||
causal_attention_mask = OPTPipelineForwards._prepare_decoder_attention_mask(attention_mask, input_shape, _dtype,
|
||||
device, past_key_values_length)
|
||||
|
||||
if stage_manager.is_first_stage():
|
||||
pos_embeds = decoder.embed_positions(attention_mask, past_key_values_length)
|
||||
hidden_states = inputs_embeds + pos_embeds
|
||||
|
||||
if decoder.gradient_checkpointing and decoder.training:
|
||||
if use_cache:
|
||||
logger.warning_once(
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
|
||||
use_cache = False
|
||||
|
||||
# TODO: left the recording kv-value tensors as () or None type, this feature may be added in the future.
|
||||
if past_key_values:
|
||||
logger.warning_once('Non-empty past_key_values is not supported for pipeline models at the moment.')
|
||||
past_key_values = None
|
||||
if output_attentions:
|
||||
logger.warning_once('output_attentions=True is not supported for pipeline models at the moment.')
|
||||
output_attentions = False
|
||||
if output_hidden_states:
|
||||
logger.warning_once('output_hidden_states=True is not supported for pipeline models at the moment.')
|
||||
output_hidden_states = False
|
||||
if use_cache:
|
||||
logger.warning_once('use_cache=True is not supported for pipeline models at the moment.')
|
||||
use_cache = False
|
||||
|
||||
# decoder layers
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_self_attns = () if output_attentions else None
|
||||
next_decoder_cache = () if use_cache else None
|
||||
|
||||
# check if head_mask has a correct number of layers specified if desired
|
||||
for attn_mask, mask_name in zip([head_mask], ["head_mask"]):
|
||||
if attn_mask is not None:
|
||||
if attn_mask.size()[0] != (len(decoder.layers)):
|
||||
raise ValueError(
|
||||
f"The `{mask_name}` should be specified for {len(decoder.layers)} layers, but it is for"
|
||||
f" {head_mask.size()[0]}.")
|
||||
|
||||
start_idx, end_idx = stage_index[0], stage_index[1]
|
||||
|
||||
torch.cuda.set_device(device)
|
||||
|
||||
for idx in range(start_idx, end_idx):
|
||||
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
||||
decoder_layer = decoder.layers[idx]
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
dropout_probability = random.uniform(0, 1)
|
||||
if decoder.training and (dropout_probability < decoder.layerdrop):
|
||||
continue
|
||||
|
||||
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
||||
|
||||
if decoder.gradient_checkpointing and decoder.training:
|
||||
|
||||
def create_custom_forward(module):
|
||||
|
||||
def custom_forward(*inputs):
|
||||
# None for past_key_value
|
||||
return module(*inputs, output_attentions, None)
|
||||
|
||||
return custom_forward
|
||||
|
||||
layer_outputs = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(decoder_layer),
|
||||
hidden_states,
|
||||
causal_attention_mask,
|
||||
head_mask[idx] if head_mask is not None else None,
|
||||
None,
|
||||
)
|
||||
else:
|
||||
layer_outputs = decoder_layer(
|
||||
hidden_states,
|
||||
attention_mask=causal_attention_mask,
|
||||
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
||||
past_key_value=past_key_value,
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
|
||||
if use_cache:
|
||||
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
||||
|
||||
if output_attentions:
|
||||
all_self_attns += (layer_outputs[1],)
|
||||
|
||||
if stage_manager.is_last_stage():
|
||||
if decoder.final_layer_norm is not None:
|
||||
hidden_states = decoder.final_layer_norm(hidden_states)
|
||||
if decoder.project_out is not None:
|
||||
hidden_states = decoder.project_out(hidden_states)
|
||||
|
||||
# add hidden states from the last decoder layer
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
next_cache = next_decoder_cache if use_cache else None
|
||||
|
||||
if stage_manager.is_last_stage():
|
||||
if not return_dict:
|
||||
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
||||
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=next_cache,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attns,
|
||||
)
|
||||
else:
|
||||
return {'hidden_states': hidden_states}
|
||||
|
||||
@staticmethod
|
||||
def opt_for_causal_lm_forward(
|
||||
self: OPTForCausalLM,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None,
|
||||
stage_index: Optional[List[int]] = None,
|
||||
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||||
r"""
|
||||
Args:
|
||||
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||||
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
||||
provide it.
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
[What are input IDs?](../glossary#input-ids)
|
||||
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
[What are attention masks?](../glossary#attention-mask)
|
||||
head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
|
||||
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 indicates the head is **not masked**,
|
||||
- 0 indicates the head is **masked**.
|
||||
|
||||
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
||||
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
||||
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
|
||||
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
|
||||
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
|
||||
|
||||
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
|
||||
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
||||
|
||||
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
|
||||
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
|
||||
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
||||
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
||||
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
||||
than the model's internal embedding lookup matrix.
|
||||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
||||
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
||||
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
||||
(see `past_key_values`).
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||||
returned tensors for more detail.
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
||||
for more detail.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
|
||||
Returns:
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, OPTForCausalLM
|
||||
|
||||
>>> model = OPTForCausalLM.from_pretrained("facebook/opt-350m")
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
|
||||
|
||||
>>> prompt = "Hey, are you consciours? Can you talk to me?"
|
||||
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
||||
|
||||
>>> # Generate
|
||||
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
||||
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
||||
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
|
||||
```"""
|
||||
from transformers.modeling_outputs import CausalLMOutputWithPast
|
||||
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (output_hidden_states
|
||||
if output_hidden_states is not None else self.config.output_hidden_states)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
||||
outputs = OPTPipelineForwards.opt_model_forward(
|
||||
self.model,
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
head_mask=head_mask,
|
||||
past_key_values=past_key_values,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
stage_manager=stage_manager,
|
||||
hidden_states=hidden_states,
|
||||
stage_index=stage_index,
|
||||
)
|
||||
if stage_manager.is_last_stage():
|
||||
logits = self.lm_head(outputs[0]).contiguous()
|
||||
loss = None
|
||||
if labels is not None:
|
||||
# move labels to correct device to enable model parallelism
|
||||
labels = labels.to(logits.device)
|
||||
# Shift so that tokens < n predict n
|
||||
shift_logits = logits[..., :-1, :].contiguous()
|
||||
shift_labels = labels[..., 1:].contiguous()
|
||||
# Flatten the tokens
|
||||
loss_fct = CrossEntropyLoss()
|
||||
loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1))
|
||||
if not return_dict:
|
||||
output = (logits,) + outputs[1:]
|
||||
return (loss,) + output if loss is not None else output
|
||||
|
||||
return CausalLMOutputWithPast(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
past_key_values=outputs.past_key_values,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
)
|
||||
else:
|
||||
hidden_states = outputs.get('hidden_states')
|
||||
return {'hidden_states': hidden_states}
|
||||
|
||||
@staticmethod
|
||||
def opt_for_sequence_classification_forward(
|
||||
self: OPTForSequenceClassification,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None,
|
||||
stage_index: Optional[List[int]] = None,
|
||||
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
||||
"""
|
||||
from transformers.modeling_outputs import SequenceClassifierOutputWithPast
|
||||
from transformers.utils import logging
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
transformer_outputs = OPTPipelineForwards.opt_model_forward(self.model,
|
||||
input_ids,
|
||||
past_key_values=past_key_values,
|
||||
attention_mask=attention_mask,
|
||||
head_mask=head_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
stage_manager=stage_manager,
|
||||
hidden_states=hidden_states,
|
||||
stage_index=stage_index)
|
||||
|
||||
if stage_manager.is_last_stage():
|
||||
hidden_states = transformer_outputs[0]
|
||||
logits = self.score(hidden_states)
|
||||
|
||||
batch_size = input_ids.shape[0] if input_ids is not None else hidden_states.shape[0]
|
||||
|
||||
if self.config.pad_token_id is None:
|
||||
sequence_lengths = -1
|
||||
else:
|
||||
if input_ids is not None:
|
||||
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
|
||||
else:
|
||||
sequence_lengths = -1
|
||||
logger.warning(
|
||||
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
||||
"unexpected if using padding tokens in conjunction with `inputs_embeds.`")
|
||||
|
||||
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
if self.config.problem_type is None:
|
||||
if self.num_labels == 1:
|
||||
self.config.problem_type = "regression"
|
||||
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
||||
self.config.problem_type = "single_label_classification"
|
||||
else:
|
||||
self.config.problem_type = "multi_label_classification"
|
||||
|
||||
if self.config.problem_type == "regression":
|
||||
loss_fct = MSELoss()
|
||||
if self.num_labels == 1:
|
||||
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
||||
else:
|
||||
loss = loss_fct(pooled_logits, labels)
|
||||
elif self.config.problem_type == "single_label_classification":
|
||||
loss_fct = CrossEntropyLoss()
|
||||
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
||||
elif self.config.problem_type == "multi_label_classification":
|
||||
loss_fct = BCEWithLogitsLoss()
|
||||
loss = loss_fct(pooled_logits, labels)
|
||||
|
||||
if not return_dict:
|
||||
output = (pooled_logits,) + transformer_outputs[1:]
|
||||
return ((loss,) + output) if loss is not None else output
|
||||
|
||||
return SequenceClassifierOutputWithPast(
|
||||
loss=loss,
|
||||
logits=pooled_logits,
|
||||
past_key_values=transformer_outputs.past_key_values,
|
||||
hidden_states=transformer_outputs.hidden_states,
|
||||
attentions=transformer_outputs.attentions,
|
||||
)
|
||||
else:
|
||||
hidden_states = transformer_outputs.get('hidden_states')
|
||||
return {'hidden_states': hidden_states}
|
||||
|
||||
@staticmethod
|
||||
def opt_for_question_answering_forward(
|
||||
self: OPTForQuestionAnswering,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
start_positions: Optional[torch.LongTensor] = None,
|
||||
end_positions: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None,
|
||||
stage_index: Optional[List[int]] = None,
|
||||
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
||||
r"""
|
||||
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
||||
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
||||
are not taken into account for computing the loss.
|
||||
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
||||
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
||||
are not taken into account for computing the loss.
|
||||
|
||||
Returns:
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, OPTForQuestionAnswering
|
||||
>>> import torch
|
||||
|
||||
>>> torch.manual_seed(4) # doctest: +IGNORE_RESULT
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
|
||||
|
||||
>>> # note: we are loading a OPTForQuestionAnswering from the hub here,
|
||||
>>> # so the head will be randomly initialized, hence the predictions will be random
|
||||
>>> model = OPTForQuestionAnswering.from_pretrained("facebook/opt-350m")
|
||||
|
||||
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
|
||||
|
||||
>>> inputs = tokenizer(question, text, return_tensors="pt")
|
||||
>>> with torch.no_grad():
|
||||
... outputs = model(**inputs)
|
||||
|
||||
>>> answer_start_index = outputs.start_logits.argmax()
|
||||
>>> answer_end_index = outputs.end_logits.argmax()
|
||||
|
||||
>>> answer_offset = len(tokenizer(question)[0])
|
||||
|
||||
>>> predict_answer_tokens = inputs.input_ids[
|
||||
... 0, answer_offset + answer_start_index : answer_offset + answer_end_index + 1
|
||||
... ]
|
||||
>>> predicted = tokenizer.decode(predict_answer_tokens)
|
||||
>>> predicted
|
||||
' a nice puppet'
|
||||
```"""
|
||||
from transformers.modeling_outputs import QuestionAnsweringModelOutput
|
||||
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
transformer_outputs = OPTPipelineForwards.opt_model_forward(self.model,
|
||||
input_ids,
|
||||
past_key_values=past_key_values,
|
||||
attention_mask=attention_mask,
|
||||
head_mask=head_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
stage_manager=stage_manager,
|
||||
hidden_states=hidden_states,
|
||||
stage_index=stage_index)
|
||||
if stage_manager.is_last_stage():
|
||||
hidden_states = transformer_outputs[0]
|
||||
|
||||
logits = self.qa_outputs(hidden_states)
|
||||
start_logits, end_logits = logits.split(1, dim=-1)
|
||||
start_logits = start_logits.squeeze(-1).contiguous()
|
||||
end_logits = end_logits.squeeze(-1).contiguous()
|
||||
|
||||
total_loss = None
|
||||
if start_positions is not None and end_positions is not None:
|
||||
# If we are on multi-GPU, split add a dimension
|
||||
if len(start_positions.size()) > 1:
|
||||
start_positions = start_positions.squeeze(-1)
|
||||
if len(end_positions.size()) > 1:
|
||||
end_positions = end_positions.squeeze(-1)
|
||||
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
||||
ignored_index = start_logits.size(1)
|
||||
start_positions = start_positions.clamp(0, ignored_index)
|
||||
end_positions = end_positions.clamp(0, ignored_index)
|
||||
|
||||
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
||||
start_loss = loss_fct(start_logits, start_positions)
|
||||
end_loss = loss_fct(end_logits, end_positions)
|
||||
total_loss = (start_loss + end_loss) / 2
|
||||
|
||||
if not return_dict:
|
||||
output = (start_logits, end_logits) + transformer_outputs[2:]
|
||||
return ((total_loss,) + output) if total_loss is not None else output
|
||||
|
||||
return QuestionAnsweringModelOutput(
|
||||
loss=total_loss,
|
||||
start_logits=start_logits,
|
||||
end_logits=end_logits,
|
||||
hidden_states=transformer_outputs.hidden_states,
|
||||
attentions=transformer_outputs.attentions,
|
||||
)
|
||||
else:
|
||||
hidden_states = transformer_outputs.get('hidden_states')
|
||||
return {'hidden_states': hidden_states}
|
||||
|
|
|
@ -53,7 +53,8 @@ def data_gen_for_question_answering():
|
|||
# inputs = tokenizer(question, text, return_tensors="pt")
|
||||
|
||||
input_ids = torch.tensor(
|
||||
[[57647, 1620, 23967, 620, 107373, 34, 91514, 620, 107373, 1620, 267, 35378, 48946, 18161, 48946, 18161]], dtype=torch.int64)
|
||||
[[57647, 1620, 23967, 620, 107373, 34, 91514, 620, 107373, 1620, 267, 35378, 48946, 18161, 48946, 18161]],
|
||||
dtype=torch.int64)
|
||||
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64)
|
||||
start_positions = torch.tensor([1], dtype=torch.int64)
|
||||
end_positions = torch.tensor([10], dtype=torch.int64)
|
||||
|
@ -73,12 +74,13 @@ loss_fn_for_causal_lm = lambda x: x.loss
|
|||
loss_fn_for_classification = lambda x: x.loss
|
||||
loss_fn_for_question_answering = lambda x: x.loss
|
||||
|
||||
config = transformers.BloomConfig(n_layer=1,
|
||||
config = transformers.BloomConfig(n_layer=2,
|
||||
n_head=4,
|
||||
vocab_size=250880,
|
||||
hidden_dropout=0,
|
||||
attention_dropout=0,
|
||||
hidden_size=64)
|
||||
hidden_size=64,
|
||||
pad_token_id=50256)
|
||||
|
||||
# register the following models
|
||||
model_zoo.register(name='transformers_bloom',
|
||||
|
|
|
@ -17,14 +17,24 @@ def data_gen():
|
|||
return dict(input_ids=input_ids, attention_mask=attention_mask)
|
||||
|
||||
|
||||
def data_gen_for_conditional_generation():
|
||||
# token classification data gen
|
||||
# `labels` is the type not the token id for token classification, 0 or 1
|
||||
data = data_gen()
|
||||
labels = data['input_ids'].clone()
|
||||
data['labels'] = labels
|
||||
return data
|
||||
|
||||
|
||||
# define output transform function
|
||||
output_transform_fn = lambda x: x
|
||||
|
||||
# define loss function
|
||||
loss_fn_for_chatglm_model = lambda x: x.last_hidden_state.sum()
|
||||
loss_fn = lambda x: x.logits.sum()
|
||||
loss_fn_for_chatglm_model = lambda x: torch.nn.functional.mse_loss(x.last_hidden_state,
|
||||
torch.ones_like(x.last_hidden_state))
|
||||
loss_fn = lambda x: x.loss
|
||||
|
||||
config = ChatGLMConfig(num_layers=1,
|
||||
config = ChatGLMConfig(num_layers=2,
|
||||
padded_vocab_size=65024,
|
||||
hidden_size=64,
|
||||
num_attention_heads=8,
|
||||
|
@ -33,7 +43,6 @@ config = ChatGLMConfig(num_layers=1,
|
|||
use_cache=True,
|
||||
torch_dtype=torch.float32)
|
||||
|
||||
|
||||
model_zoo.register(name='transformers_chatglm',
|
||||
model_fn=lambda: ChatGLMModel(config, empty_init=False),
|
||||
data_gen_fn=data_gen,
|
||||
|
@ -43,7 +52,7 @@ model_zoo.register(name='transformers_chatglm',
|
|||
|
||||
model_zoo.register(name="transformers_chatglm_for_conditional_generation",
|
||||
model_fn=lambda: ChatGLMForConditionalGeneration(config, empty_init=False),
|
||||
data_gen_fn=data_gen,
|
||||
data_gen_fn=data_gen_for_conditional_generation,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
|
|
|
@ -7,11 +7,7 @@ from ..registry import ModelAttribute, model_zoo
|
|||
# Register single-sentence VIT
|
||||
# ===============================
|
||||
|
||||
config = transformers.ViTConfig(
|
||||
num_hidden_layers=4,
|
||||
# hidden_size=128,
|
||||
# intermediate_size=256,
|
||||
num_attention_heads=4)
|
||||
config = transformers.ViTConfig(num_hidden_layers=4, hidden_size=128, intermediate_size=256, num_attention_heads=4)
|
||||
|
||||
|
||||
# define data gen function
|
||||
|
|
|
@ -104,27 +104,22 @@ def build_model_from_hybrid_plugin(model_fn: Callable, loss_fn: Callable, test_c
|
|||
if 'use_lazy_init' in test_config:
|
||||
use_lazy_init = test_config.pop('use_lazy_init')
|
||||
|
||||
if use_lazy_init:
|
||||
ctx = LazyInitContext()
|
||||
else:
|
||||
ctx = nullcontext()
|
||||
|
||||
plugin = HybridParallelPlugin(**test_config)
|
||||
booster = Booster(plugin=plugin)
|
||||
|
||||
ctx = LazyInitContext() if use_lazy_init else nullcontext()
|
||||
with ctx:
|
||||
org_model = model_fn().cuda()
|
||||
org_model = model_fn()
|
||||
sharded_model = copy.deepcopy(org_model)
|
||||
|
||||
if use_lazy_init:
|
||||
org_model = ctx.materialize(org_model)
|
||||
ctx.materialize(org_model)
|
||||
|
||||
org_model = org_model.cuda()
|
||||
org_optimizer = Adam(org_model.parameters(), lr=1e-3)
|
||||
sharded_optimizer = Adam(sharded_model.parameters(), lr=1e-3)
|
||||
criterion = loss_fn
|
||||
|
||||
sharded_model, sharded_optimizer, criterion, _, _ = booster.boost(sharded_model, sharded_optimizer, criterion)
|
||||
plugin = HybridParallelPlugin(**test_config)
|
||||
booster = Booster(plugin=plugin)
|
||||
|
||||
sharded_model, sharded_optimizer, criterion, _, _ = booster.boost(sharded_model, sharded_optimizer, criterion)
|
||||
return org_model, org_optimizer, sharded_model, sharded_optimizer, criterion, booster
|
||||
|
||||
|
||||
|
@ -142,11 +137,12 @@ def run_forward_backward_with_hybrid_plugin(org_model: Module, sharded_model: Mo
|
|||
data = data_gen_fn()
|
||||
sharded_model.train()
|
||||
if booster.plugin.stage_manager is not None:
|
||||
data = {
|
||||
k: v.to('cuda').repeat(*([4] + [1] *
|
||||
(v.dim() - 1))) if torch.is_tensor(v) or 'Tensor' in v.__class__.__name__ else v
|
||||
for k, v in data.items()
|
||||
}
|
||||
for k, v in data.items():
|
||||
if torch.is_tensor(v) or 'Tensor' in v.__class__.__name__:
|
||||
new_shape = [1] * v.dim()
|
||||
new_shape[0] = 4
|
||||
data[k] = v.to('cuda').repeat(*new_shape)
|
||||
|
||||
data_iter = iter([data])
|
||||
sharded_output = booster.execute_pipeline(data_iter,
|
||||
sharded_model,
|
||||
|
@ -176,7 +172,8 @@ def check_output_hidden_state(org_output: Tensor,
|
|||
sharded_output: Tensor,
|
||||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
atol: float = 1e-5,
|
||||
rtol: float = 1e-3):
|
||||
rtol: float = 1e-3,
|
||||
dim: int = 0):
|
||||
|
||||
org_hidden_state = org_output.last_hidden_state
|
||||
|
||||
|
@ -184,7 +181,7 @@ def check_output_hidden_state(org_output: Tensor,
|
|||
sharded_hidden_state = sharded_output.last_hidden_state
|
||||
|
||||
if stage_manager and stage_manager.is_last_stage():
|
||||
sharded_hidden_state = torch.cat([output.last_hidden_state for output in sharded_output['outputs']], dim=0)
|
||||
sharded_hidden_state = torch.cat([output.last_hidden_state for output in sharded_output['outputs']], dim=dim)
|
||||
|
||||
assert torch.allclose(org_hidden_state.float(), sharded_hidden_state.float(), atol=atol, rtol=rtol), \
|
||||
f"shard model's output hidden state is not equal to origin model's last hidden state\n{org_hidden_state}\n{sharded_hidden_state}"
|
||||
|
|
|
@ -3,57 +3,101 @@ import torch
|
|||
|
||||
import colossalai
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.testing import (
|
||||
assert_hf_output_close,
|
||||
clear_cache_before_run,
|
||||
parameterize,
|
||||
rerun_if_address_is_in_use,
|
||||
spawn,
|
||||
)
|
||||
from colossalai.tensor.d_tensor.api import clear_layout_converter
|
||||
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
from tests.test_shardformer.test_model._utils import build_model, check_grad, check_state_dict, run_forward
|
||||
from tests.test_shardformer.test_model._utils import (
|
||||
build_model_from_hybrid_plugin,
|
||||
check_grad,
|
||||
check_loss,
|
||||
check_output_hidden_state,
|
||||
check_weight,
|
||||
run_forward_backward_with_hybrid_plugin,
|
||||
)
|
||||
|
||||
|
||||
def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn):
|
||||
# check forward
|
||||
org_output, org_loss, shard_output, shard_loss = run_forward(org_model, sharded_model, data_gen_fn,
|
||||
output_transform_fn, loss_fn)
|
||||
assert_hf_output_close(org_output, shard_output, ignore_keys=['past_key_values'])
|
||||
def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config):
|
||||
|
||||
# do backward
|
||||
org_loss.backward()
|
||||
shard_loss.backward()
|
||||
org_model, org_optimizer, sharded_model, sharded_optimizer, criterion, booster = \
|
||||
build_model_from_hybrid_plugin(model_fn, loss_fn, test_config)
|
||||
|
||||
assert torch.allclose(org_loss, shard_loss,
|
||||
atol=1e-6), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}"
|
||||
org_loss, org_output, sharded_loss, sharded_output = \
|
||||
run_forward_backward_with_hybrid_plugin(
|
||||
org_model,
|
||||
sharded_model,
|
||||
sharded_optimizer,
|
||||
data_gen_fn,
|
||||
output_transform_fn,
|
||||
criterion,
|
||||
booster)
|
||||
|
||||
stage_manager = booster.plugin.stage_manager
|
||||
tp_group = booster.plugin.tp_group
|
||||
|
||||
# check last hidden state & loss
|
||||
if stage_manager is None or stage_manager.is_last_stage():
|
||||
|
||||
if org_model.__class__.__name__ == 'BloomModel':
|
||||
check_output_hidden_state(org_output, sharded_output, stage_manager, atol=1e-5, rtol=1e-3)
|
||||
|
||||
check_loss(org_loss, sharded_loss, atol=1e-6, rtol=1e-3)
|
||||
|
||||
# unwrap model
|
||||
if org_model.__class__.__name__ == 'BloomModel':
|
||||
bloom = org_model
|
||||
sharded_bloom = sharded_model
|
||||
sharded_bloom = sharded_model.unwrap()
|
||||
else:
|
||||
bloom = org_model.transformer
|
||||
sharded_bloom = sharded_model.transformer
|
||||
sharded_bloom = sharded_model.unwrap().transformer
|
||||
|
||||
# check grad
|
||||
col_layer_for_check = ['h[0].self_attention.query_key_value']
|
||||
row_layer_for_check = ['h[0].self_attention.dense']
|
||||
check_grad(bloom, sharded_bloom, col_layer_for_check, atol=1e-6, rtol=1e-5, dim=0, verbose=False)
|
||||
check_grad(bloom, sharded_bloom, row_layer_for_check, atol=1e-6, rtol=1e-5, dim=1, verbose=False)
|
||||
row_layer_for_check = ['h[0].self_attention.query_key_value', 'word_embeddings']
|
||||
col_layer_for_check = ['h[0].self_attention.dense']
|
||||
if stage_manager is None or stage_manager.is_first_stage():
|
||||
check_grad(bloom, sharded_bloom, row_layer_for_check, tp_group, atol=1e-6, rtol=1e-5, dim=0, verbose=False)
|
||||
check_grad(bloom, sharded_bloom, col_layer_for_check, tp_group, atol=1e-6, rtol=1e-5, dim=1, verbose=False)
|
||||
|
||||
# check weights after optimizer.step()
|
||||
org_optimizer.step()
|
||||
sharded_optimizer.step()
|
||||
if stage_manager is None or stage_manager.is_first_stage():
|
||||
check_weight(bloom, sharded_bloom, col_layer_for_check, tp_group, atol=1e-4, rtol=1e-3, dim=1, verbose=False)
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
@parameterize('enable_fused_normalization', [True, False])
|
||||
@parameterize('enable_tensor_parallelism', [True, False])
|
||||
@parameterize('enable_flash_attention', [True, False])
|
||||
@parameterize('enable_jit_fused', [True, False])
|
||||
@parameterize('use_lazy_init', [False, True])
|
||||
def run_bloom_test(enable_fused_normalization, enable_tensor_parallelism, enable_flash_attention, enable_jit_fused,
|
||||
use_lazy_init):
|
||||
@parameterize('test_config', [{
|
||||
'tp_size': 2,
|
||||
'pp_size': 2,
|
||||
'num_microbatches': 4,
|
||||
'enable_fused_normalization': True,
|
||||
'use_lazy_init': True
|
||||
}, {
|
||||
'tp_size': 1,
|
||||
'pp_size': 2,
|
||||
'num_microbatches': 4,
|
||||
'enable_fused_normalization': False,
|
||||
'use_lazy_init': False
|
||||
}, {
|
||||
'tp_size': 4,
|
||||
'pp_size': 1,
|
||||
'enable_fused_normalization': True,
|
||||
'use_lazy_init': False
|
||||
}])
|
||||
def run_bloom_test(test_config):
|
||||
|
||||
# TODO: add test_config for TP+DP after supporting & debugging it
|
||||
# {'tp_size': 2, 'pp_size': 1, 'enable_fused_normalization': True}
|
||||
|
||||
# TODO: add test_config for flash attention & jit operator after supporting
|
||||
|
||||
sub_model_zoo = model_zoo.get_sub_registry('transformers_bloom')
|
||||
test_config['precision'] = 'float' # Do not use fp16/bf16 in testing
|
||||
|
||||
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
||||
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism,
|
||||
enable_flash_attention, enable_jit_fused, use_lazy_init)
|
||||
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
|
||||
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
|
||||
|
||||
clear_layout_converter()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
|
@ -67,7 +111,7 @@ def check_bloom(rank, world_size, port):
|
|||
@rerun_if_address_is_in_use()
|
||||
@clear_cache_before_run()
|
||||
def test_bloom():
|
||||
spawn(check_bloom, 2)
|
||||
spawn(check_bloom, 4)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
@ -1,90 +0,0 @@
|
|||
import pytest
|
||||
import torch
|
||||
|
||||
import colossalai
|
||||
from colossalai.cluster import ProcessGroupMesh
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
from colossalai.shardformer.policies.auto_policy import get_autopolicy
|
||||
from colossalai.shardformer.policies.base_policy import Policy
|
||||
from colossalai.shardformer.shard import ShardConfig
|
||||
from colossalai.tensor.d_tensor.api import is_customized_distributed_tensor, is_distributed_tensor
|
||||
from colossalai.testing import (
|
||||
assert_hf_output_close,
|
||||
clear_cache_before_run,
|
||||
parameterize,
|
||||
rerun_if_address_is_in_use,
|
||||
spawn,
|
||||
)
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
from tests.test_shardformer.test_model._utils import build_model, build_pipeline_model, run_forward
|
||||
|
||||
|
||||
def check_bloom_model_policy(name, model: torch.nn.Module, stage_manager: PipelineStageManager):
|
||||
policy = get_autopolicy(model)
|
||||
policy.set_model(model)
|
||||
model_config = ShardConfig(pipeline_stage_manager=stage_manager, enable_tensor_parallelism=False)
|
||||
policy.set_shard_config(model_config)
|
||||
layers = policy.get_held_layers()
|
||||
if stage_manager.is_first_stage():
|
||||
assert len(layers) == 0 + 2
|
||||
else:
|
||||
if name == 'transformers_bloom':
|
||||
assert len(layers) == 1 + 1
|
||||
elif name == 'transformers_bloom_for_token_classification':
|
||||
assert len(layers) == 1 + 3
|
||||
else:
|
||||
assert len(layers) == 1 + 2
|
||||
|
||||
|
||||
def check_bloom_model_pipeline_forward(name, sharded_model, stage_manager: PipelineStageManager):
|
||||
if stage_manager.stage == 0:
|
||||
x = torch.randint(0, 1000, (1, 3)).cuda()
|
||||
attention_mask = torch.ones_like(x).cuda()
|
||||
output = sharded_model(input_ids=x, attention_mask=attention_mask)
|
||||
assert output['hidden_states'].shape == (1, 3, 64)
|
||||
else:
|
||||
attention_mask = torch.ones((1, 3)).cuda()
|
||||
hidden_states = torch.randint(0, 1000, (1, 3, 64)).to(torch.float32).cuda()
|
||||
output = sharded_model(
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
)
|
||||
assert output[0].shape[0] == 1
|
||||
|
||||
|
||||
@parameterize('enable_fused_normalization', [False])
|
||||
@parameterize('enable_tensor_parallelism', [False])
|
||||
@parameterize('use_lazy_init', [False])
|
||||
#TODO: merge this into test_shard_bloom
|
||||
def run_bloom_test(enable_fused_normalization, enable_tensor_parallelism, use_lazy_init):
|
||||
PP_DIM = 0
|
||||
PP_SIZE = 2
|
||||
pg_mesh = ProcessGroupMesh(PP_SIZE)
|
||||
stage_manager = PipelineStageManager(pg_mesh, PP_DIM)
|
||||
|
||||
sub_model_zoo = model_zoo.get_sub_registry('transformers_bloom')
|
||||
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
||||
org_model, sharded_model = build_pipeline_model(model_fn, stage_manager, enable_fused_normalization,
|
||||
enable_tensor_parallelism, use_lazy_init)
|
||||
check_bloom_model_policy(name, org_model, stage_manager)
|
||||
check_bloom_model_pipeline_forward(name, sharded_model, stage_manager)
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
def check_bloom(rank, world_size, port):
|
||||
disable_existing_loggers()
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
run_bloom_test()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
@clear_cache_before_run()
|
||||
def test_bloom():
|
||||
spawn(check_bloom, 2)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_bloom()
|
|
@ -1,99 +1,126 @@
|
|||
import copy
|
||||
import os
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
from torch import distributed as dist
|
||||
|
||||
import colossalai
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.shardformer import ShardConfig, ShardFormer
|
||||
from colossalai.shardformer.policies.chatglm import ChatGLMForConditionalGenerationPolicy, ChatGLMModelPolicy
|
||||
from colossalai.tensor.d_tensor.api import is_customized_distributed_tensor, is_distributed_tensor
|
||||
from colossalai.testing import (
|
||||
assert_hf_output_close,
|
||||
clear_cache_before_run,
|
||||
parameterize,
|
||||
rerun_if_address_is_in_use,
|
||||
spawn,
|
||||
)
|
||||
from colossalai.tensor.d_tensor.api import clear_layout_converter
|
||||
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
from tests.test_shardformer.test_model._utils import build_model, run_forward
|
||||
from tests.test_shardformer.test_model._utils import (
|
||||
build_model_from_hybrid_plugin,
|
||||
check_grad,
|
||||
check_loss,
|
||||
check_output_hidden_state,
|
||||
check_weight,
|
||||
run_forward_backward_with_hybrid_plugin,
|
||||
)
|
||||
|
||||
|
||||
def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn):
|
||||
# check forward
|
||||
org_output, org_loss, shard_output, shard_loss = run_forward(org_model, sharded_model, data_gen_fn,
|
||||
output_transform_fn, loss_fn)
|
||||
assert_hf_output_close(org_output, shard_output, ignore_keys=['past_key_values'])
|
||||
# do backward
|
||||
org_loss.backward()
|
||||
shard_loss.backward()
|
||||
def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config):
|
||||
|
||||
assert torch.allclose(org_loss, shard_loss,
|
||||
atol=1e-5), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}"
|
||||
org_model, org_optimizer, sharded_model, sharded_optimizer, criterion, booster = \
|
||||
build_model_from_hybrid_plugin(model_fn, loss_fn, test_config)
|
||||
|
||||
org_loss, org_output, sharded_loss, sharded_output = \
|
||||
run_forward_backward_with_hybrid_plugin(
|
||||
org_model,
|
||||
sharded_model,
|
||||
sharded_optimizer,
|
||||
data_gen_fn,
|
||||
output_transform_fn,
|
||||
criterion,
|
||||
booster)
|
||||
|
||||
stage_manager = booster.plugin.stage_manager
|
||||
tp_group = booster.plugin.tp_group
|
||||
|
||||
# check last hidden state & loss
|
||||
if stage_manager is None or stage_manager.is_last_stage():
|
||||
|
||||
if org_model.__class__.__name__ == 'ChatGLMModel':
|
||||
check_output_hidden_state(org_output, sharded_output, stage_manager, atol=1e-5, rtol=1e-3, dim=1)
|
||||
|
||||
check_loss(org_loss, sharded_loss, atol=1e-6, rtol=1e-3)
|
||||
|
||||
# unwrap model
|
||||
if org_model.__class__.__name__ == 'ChatGLMModel':
|
||||
chatglm_model = org_model
|
||||
shard_chatglm_model = sharded_model
|
||||
shard_chatglm_model = sharded_model.unwrap()
|
||||
else:
|
||||
chatglm_model = org_model.transformer
|
||||
shard_chatglm_model = sharded_model.transformer
|
||||
shard_chatglm_model = sharded_model.unwrap().transformer
|
||||
|
||||
# check attention grad
|
||||
org_grad = chatglm_model.encoder.layers[0].self_attention.query_key_value.weight.grad
|
||||
shard_grad = shard_chatglm_model.encoder.layers[0].self_attention.query_key_value.weight.grad
|
||||
shard_weight = shard_chatglm_model.encoder.layers[0].self_attention.query_key_value.weight
|
||||
# check grad
|
||||
row_layer_for_check = ['encoder.layers[0].self_attention.query_key_value', 'embedding.word_embeddings']
|
||||
col_layer_for_check = ['encoder.layers[0].self_attention.dense']
|
||||
if stage_manager is None or stage_manager.is_first_stage():
|
||||
check_grad(chatglm_model,
|
||||
shard_chatglm_model,
|
||||
row_layer_for_check,
|
||||
tp_group,
|
||||
atol=1e-6,
|
||||
rtol=1e-3,
|
||||
dim=0,
|
||||
verbose=False)
|
||||
|
||||
if is_distributed_tensor(shard_weight) or is_customized_distributed_tensor(shard_weight):
|
||||
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
|
||||
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
|
||||
all_shard_grad = torch.cat(shard_grad_list, dim=0)
|
||||
else:
|
||||
all_shard_grad = shard_grad
|
||||
assert torch.allclose(org_grad, all_shard_grad,
|
||||
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{shard_grad}"
|
||||
check_grad(chatglm_model,
|
||||
shard_chatglm_model,
|
||||
col_layer_for_check,
|
||||
tp_group,
|
||||
atol=1e-6,
|
||||
rtol=1e-3,
|
||||
dim=1,
|
||||
verbose=False)
|
||||
|
||||
# check embedding weights
|
||||
org_grad = chatglm_model.embedding.word_embeddings.weight.grad
|
||||
shard_grad = shard_chatglm_model.embedding.word_embeddings.weight.grad
|
||||
shard_weight = shard_chatglm_model.embedding.word_embeddings.weight
|
||||
# check weights after optimizer.step()
|
||||
org_optimizer.step()
|
||||
sharded_optimizer.step()
|
||||
if stage_manager is None or stage_manager.is_first_stage():
|
||||
check_weight(chatglm_model,
|
||||
shard_chatglm_model,
|
||||
col_layer_for_check,
|
||||
tp_group,
|
||||
atol=1e-4,
|
||||
rtol=1e-3,
|
||||
dim=1,
|
||||
verbose=False)
|
||||
|
||||
if is_distributed_tensor(shard_weight) or is_customized_distributed_tensor(shard_weight):
|
||||
shard_grad_list = [torch.zeros_like(shard_grad) for _ in range(2)]
|
||||
torch.distributed.all_gather(shard_grad_list, shard_grad)
|
||||
all_shard_grad = torch.cat(shard_grad_list, dim=0)
|
||||
else:
|
||||
all_shard_grad = shard_grad
|
||||
|
||||
assert torch.allclose(org_grad, all_shard_grad,
|
||||
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{all_shard_grad}"
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
@parameterize('enable_fused_normalization', [True, False])
|
||||
@parameterize('enable_tensor_parallelism', [True, False])
|
||||
@parameterize('enable_flash_attention', [True, False])
|
||||
@parameterize('enable_jit_fused', [True, False])
|
||||
def run_chatglm_test(enable_fused_normalization, enable_tensor_parallelism, enable_flash_attention, enable_jit_fused):
|
||||
@parameterize('test_config', [{
|
||||
'tp_size': 2,
|
||||
'pp_size': 2,
|
||||
'num_microbatches': 4,
|
||||
'enable_fused_normalization': True,
|
||||
'use_lazy_init': True
|
||||
}, {
|
||||
'tp_size': 1,
|
||||
'pp_size': 2,
|
||||
'num_microbatches': 4,
|
||||
'enable_fused_normalization': False,
|
||||
'use_lazy_init': False
|
||||
}, {
|
||||
'tp_size': 4,
|
||||
'pp_size': 1,
|
||||
'enable_fused_normalization': True,
|
||||
'use_lazy_init': False
|
||||
}])
|
||||
def run_chatglm_test(test_config):
|
||||
|
||||
# TODO: add test_config for TP+DP after supporting & debugging it
|
||||
# {'tp_size': 2, 'pp_size': 1, 'enable_fused_normalization': True}
|
||||
|
||||
# TODO: add test_config for flash attention & jit operator after supporting
|
||||
|
||||
sub_model_zoo = model_zoo.get_sub_registry('transformers_chatglm')
|
||||
test_config['precision'] = 'float' # Do not use fp16/bf16 in testing
|
||||
|
||||
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
||||
# create new model
|
||||
org_model = model_fn().cuda()
|
||||
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
|
||||
|
||||
# shard model
|
||||
shard_config = ShardConfig(enable_fused_normalization=enable_fused_normalization,
|
||||
enable_tensor_parallelism=enable_tensor_parallelism,
|
||||
enable_flash_attention=enable_flash_attention,
|
||||
enable_jit_fused=enable_jit_fused)
|
||||
model_copy = copy.deepcopy(org_model)
|
||||
shard_former = ShardFormer(shard_config=shard_config)
|
||||
if name == "transformers_chatglm":
|
||||
sharded_model, _ = shard_former.optimize(model_copy, ChatGLMModelPolicy())
|
||||
else:
|
||||
sharded_model, _ = shard_former.optimize(model_copy, ChatGLMForConditionalGenerationPolicy())
|
||||
sharded_model = sharded_model.cuda()
|
||||
|
||||
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
|
||||
clear_layout_converter()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
|
@ -107,7 +134,7 @@ def check_chatglm(rank, world_size, port):
|
|||
@rerun_if_address_is_in_use()
|
||||
@clear_cache_before_run()
|
||||
def test_chatglm():
|
||||
spawn(check_chatglm, 2)
|
||||
spawn(check_chatglm, 4)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
@ -1,86 +0,0 @@
|
|||
import copy
|
||||
import os
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
import colossalai
|
||||
from colossalai.cluster import ProcessGroupMesh
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
from colossalai.shardformer.policies.chatglm import ChatGLMForConditionalGenerationPolicy, ChatGLMModelPolicy
|
||||
from colossalai.tensor.d_tensor.api import is_customized_distributed_tensor, is_distributed_tensor
|
||||
from colossalai.testing import (
|
||||
assert_hf_output_close,
|
||||
clear_cache_before_run,
|
||||
parameterize,
|
||||
rerun_if_address_is_in_use,
|
||||
spawn,
|
||||
)
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
from tests.test_shardformer.test_model._utils import build_model, build_pipeline_model, run_forward
|
||||
|
||||
|
||||
@parameterize('enable_fused_normalization', [False])
|
||||
@parameterize('enable_tensor_parallelism', [False])
|
||||
@parameterize('use_lazy_init', [False])
|
||||
def run_chatglm_test(enable_fused_normalization, enable_tensor_parallelism, use_lazy_init):
|
||||
DP_DIM, PP_DIM = 0, 1
|
||||
DP_SIZE, PP_SIZE = 2, 2
|
||||
pg_mesh = ProcessGroupMesh(DP_SIZE, PP_SIZE)
|
||||
stage_manager = PipelineStageManager(pg_mesh, PP_DIM)
|
||||
sub_model_zoo = model_zoo.get_sub_registry('transformers_chatglm')
|
||||
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
||||
# create new model for test
|
||||
inputs = data_gen_fn()
|
||||
inputs = {k: v.cuda() for k, v in inputs.items()}
|
||||
input_ids = inputs['input_ids']
|
||||
hidden_size = 64
|
||||
batch_size, seq_len = input_ids.shape
|
||||
hidden_state_shape = (seq_len, batch_size, hidden_size)
|
||||
if name == "transformers_chatglm":
|
||||
_, sharded_model = build_pipeline_model(model_fn, stage_manager, enable_fused_normalization,
|
||||
enable_tensor_parallelism, use_lazy_init, ChatGLMModelPolicy())
|
||||
if stage_manager.is_last_stage():
|
||||
hidden_states = torch.randn(*hidden_state_shape).cuda()
|
||||
inputs['input_ids'] = None
|
||||
inputs['hidden_states'] = hidden_states
|
||||
outputs = sharded_model(**inputs)
|
||||
if stage_manager.is_last_stage():
|
||||
assert outputs[0].shape == hidden_state_shape
|
||||
|
||||
else:
|
||||
assert outputs['hidden_states'].shape == hidden_state_shape
|
||||
|
||||
if name == "transformers_chatglm_for_conditional_generation":
|
||||
_, sharded_model = build_pipeline_model(model_fn, stage_manager, enable_fused_normalization,
|
||||
enable_tensor_parallelism, use_lazy_init,
|
||||
ChatGLMForConditionalGenerationPolicy())
|
||||
if stage_manager.is_last_stage():
|
||||
hidden_states = torch.randn(*hidden_state_shape).cuda()
|
||||
inputs['input_ids'] = None
|
||||
inputs['hidden_states'] = hidden_states
|
||||
outputs = sharded_model(**inputs)
|
||||
if stage_manager.is_last_stage():
|
||||
assert outputs[0].shape == (batch_size, seq_len, 65024)
|
||||
else:
|
||||
assert outputs['hidden_states'].shape == hidden_state_shape
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
def check_chatglm(rank, world_size, port):
|
||||
disable_existing_loggers()
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
run_chatglm_test()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
@clear_cache_before_run()
|
||||
def test_chatglm():
|
||||
spawn(check_chatglm, 4)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_chatglm()
|
|
@ -2,69 +2,139 @@ import os
|
|||
|
||||
import pytest
|
||||
import torch
|
||||
from torch import distributed as dist
|
||||
|
||||
import colossalai
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.testing import (
|
||||
assert_hf_output_close,
|
||||
clear_cache_before_run,
|
||||
parameterize,
|
||||
rerun_if_address_is_in_use,
|
||||
spawn,
|
||||
)
|
||||
from colossalai.tensor.d_tensor.api import clear_layout_converter
|
||||
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
from tests.test_shardformer.test_model._utils import build_model, check_grad, check_state_dict, run_forward
|
||||
from tests.test_shardformer.test_model._utils import (
|
||||
build_model_from_hybrid_plugin,
|
||||
check_grad,
|
||||
check_loss,
|
||||
check_output_hidden_state,
|
||||
check_weight,
|
||||
run_forward_backward_with_hybrid_plugin,
|
||||
)
|
||||
|
||||
os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = 'true'
|
||||
|
||||
|
||||
def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn):
|
||||
org_output, org_loss, shard_output, shard_loss = run_forward(org_model, sharded_model, data_gen_fn,
|
||||
output_transform_fn, loss_fn)
|
||||
def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config):
|
||||
|
||||
# forward check
|
||||
assert_hf_output_close(org_output, shard_output, ignore_keys=['past_key_values'], rtol=1e-5)
|
||||
org_model, org_optimizer, sharded_model, sharded_optimizer, criterion, booster = \
|
||||
build_model_from_hybrid_plugin(model_fn, loss_fn, test_config)
|
||||
|
||||
# run backward
|
||||
org_loss.backward()
|
||||
shard_loss.backward()
|
||||
org_loss, org_output, sharded_loss, sharded_output = \
|
||||
run_forward_backward_with_hybrid_plugin(
|
||||
org_model,
|
||||
sharded_model,
|
||||
sharded_optimizer,
|
||||
data_gen_fn,
|
||||
output_transform_fn,
|
||||
criterion,
|
||||
booster)
|
||||
|
||||
assert torch.allclose(org_loss, shard_loss,
|
||||
atol=1e-5), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}"
|
||||
stage_manager = booster.plugin.stage_manager
|
||||
tp_group = booster.plugin.tp_group
|
||||
|
||||
# check last hidden state & loss
|
||||
if stage_manager is None or stage_manager.is_last_stage():
|
||||
|
||||
if org_model.__class__.__name__ == 'LlamaModel':
|
||||
check_output_hidden_state(org_output, sharded_output, stage_manager, atol=1e-5, rtol=1e-3)
|
||||
|
||||
check_loss(org_loss, sharded_loss, atol=1e-6, rtol=1e-3)
|
||||
|
||||
# unwrap model
|
||||
if hasattr(org_model, 'model'):
|
||||
llama_model = org_model.model
|
||||
shard_llama_model = sharded_model.model
|
||||
else:
|
||||
if org_model.__class__.__name__ == 'LlamaModel':
|
||||
llama_model = org_model
|
||||
shard_llama_model = sharded_model
|
||||
shard_llama_model = sharded_model.unwrap()
|
||||
else:
|
||||
llama_model = org_model.model
|
||||
shard_llama_model = sharded_model.unwrap().model
|
||||
|
||||
# check grad
|
||||
col_layer_for_check = ['layers[0].self_attn.q_proj', 'embed_tokens']
|
||||
row_layer_for_check = ['layers[0].self_attn.o_proj']
|
||||
check_grad(llama_model, shard_llama_model, col_layer_for_check, atol=1e-6, rtol=1e-4, dim=0, verbose=False)
|
||||
check_grad(llama_model, shard_llama_model, row_layer_for_check, atol=1e-6, rtol=1e-4, dim=1, verbose=False)
|
||||
row_layer_for_check = ['layers[0].self_attn.q_proj', 'embed_tokens']
|
||||
col_layer_for_check = ['layers[0].self_attn.o_proj']
|
||||
if stage_manager is None or stage_manager.is_first_stage():
|
||||
check_grad(llama_model,
|
||||
shard_llama_model,
|
||||
row_layer_for_check,
|
||||
tp_group,
|
||||
atol=1e-6,
|
||||
rtol=1e-4,
|
||||
dim=0,
|
||||
verbose=False)
|
||||
check_grad(llama_model,
|
||||
shard_llama_model,
|
||||
col_layer_for_check,
|
||||
tp_group,
|
||||
atol=1e-6,
|
||||
rtol=1e-4,
|
||||
dim=1,
|
||||
verbose=False)
|
||||
|
||||
# check weights after optimizer.step()
|
||||
org_optimizer.step()
|
||||
sharded_optimizer.step()
|
||||
if stage_manager is None or stage_manager.is_first_stage():
|
||||
check_weight(llama_model,
|
||||
shard_llama_model,
|
||||
col_layer_for_check,
|
||||
tp_group,
|
||||
atol=1e-4,
|
||||
rtol=1e-3,
|
||||
dim=1,
|
||||
verbose=False)
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
@parameterize('enable_fused_normalization', [True, False])
|
||||
@parameterize('enable_tensor_parallelism', [True, False])
|
||||
@parameterize('enable_flash_attention', [True, False])
|
||||
@parameterize('use_lazy_init', [False, True])
|
||||
def run_gpt2_llama(enable_fused_normalization, enable_tensor_parallelism, enable_flash_attention, use_lazy_init):
|
||||
@parameterize('test_config', [{
|
||||
'tp_size': 2,
|
||||
'pp_size': 2,
|
||||
'num_microbatches': 2,
|
||||
'enable_fused_normalization': True,
|
||||
'use_lazy_init': True
|
||||
}, {
|
||||
'tp_size': 1,
|
||||
'pp_size': 2,
|
||||
'num_microbatches': 4,
|
||||
'use_lazy_init': False
|
||||
}, {
|
||||
'tp_size': 4,
|
||||
'pp_size': 1,
|
||||
'enable_fused_normalization': True,
|
||||
'use_lazy_init': False
|
||||
}, {
|
||||
'tp_size': 1,
|
||||
'pp_size': 4,
|
||||
'num_microbatches': 4,
|
||||
'use_lazy_init': False
|
||||
}])
|
||||
def run_llama_test(test_config):
|
||||
|
||||
# TODO: add test_config for TP+DP after supporting & debugging it
|
||||
# {'tp_size': 2, 'pp_size': 1, 'enable_fused_normalization': True}
|
||||
|
||||
# TODO: add test_config for flash attention & jit operator after supporting
|
||||
|
||||
sub_model_zoo = model_zoo.get_sub_registry('transformers_llama')
|
||||
test_config['precision'] = 'float' # Do not use fp16/bf16 in testing
|
||||
|
||||
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
||||
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism,
|
||||
enable_flash_attention, use_lazy_init)
|
||||
check_state_dict(org_model, sharded_model, name=name)
|
||||
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
|
||||
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
|
||||
|
||||
clear_layout_converter()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
def check_llama(rank, world_size, port):
|
||||
disable_existing_loggers()
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
run_gpt2_llama()
|
||||
run_llama_test()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
|
|
|
@ -1,89 +0,0 @@
|
|||
import pytest
|
||||
import torch
|
||||
|
||||
import colossalai
|
||||
from colossalai.cluster import ProcessGroupMesh
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
from colossalai.shardformer.policies.auto_policy import get_autopolicy
|
||||
from colossalai.shardformer.policies.base_policy import Policy
|
||||
from colossalai.shardformer.shard import ShardConfig
|
||||
from colossalai.tensor.d_tensor.api import is_customized_distributed_tensor, is_distributed_tensor
|
||||
from colossalai.testing import (
|
||||
assert_hf_output_close,
|
||||
clear_cache_before_run,
|
||||
parameterize,
|
||||
rerun_if_address_is_in_use,
|
||||
spawn,
|
||||
)
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
from tests.test_shardformer.test_model._utils import build_model, build_pipeline_model, run_forward
|
||||
|
||||
|
||||
def check_llama_model_policy(name, model: torch.nn.Module, stage_manager: PipelineStageManager):
|
||||
policy = get_autopolicy(model)
|
||||
policy.set_model(model)
|
||||
model_config = ShardConfig(pipeline_stage_manager=stage_manager, enable_tensor_parallelism=False)
|
||||
policy.set_shard_config(model_config)
|
||||
layers = policy.get_held_layers()
|
||||
if stage_manager.is_first_stage():
|
||||
assert len(layers) == 2 + 1
|
||||
else:
|
||||
if name == "transformers_llama":
|
||||
assert len(layers) == 2 + 1
|
||||
else:
|
||||
assert len(layers) == 2 + 2
|
||||
|
||||
|
||||
def check_llama_model_pipeline_forward(name, sharded_model, stage_manager: PipelineStageManager):
|
||||
x = torch.randint(0, 1000, (2, 3)).cuda()
|
||||
if stage_manager.stage == 0:
|
||||
attention_mask = torch.ones_like(x).cuda()
|
||||
output = sharded_model(input_ids=x, attention_mask=attention_mask)
|
||||
assert output['hidden_states'].shape == (2, 3, 128)
|
||||
else:
|
||||
hidden_states = torch.randint(0, 1000, (2, 3, 128)).to(torch.float32).cuda()
|
||||
attention_mask = torch.ones((2, 3)).cuda()
|
||||
output = sharded_model(
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
)
|
||||
assert output[0] is not None
|
||||
|
||||
|
||||
@parameterize('enable_fused_normalization', [False])
|
||||
@parameterize('enable_tensor_parallelism', [False])
|
||||
@parameterize('use_lazy_init', [False])
|
||||
#TODO: merge this into test_shard_llama
|
||||
def run_llama_test(enable_fused_normalization, enable_tensor_parallelism, use_lazy_init):
|
||||
PP_DIM = 0
|
||||
PP_SIZE = 2
|
||||
pg_mesh = ProcessGroupMesh(PP_SIZE)
|
||||
stage_manager = PipelineStageManager(pg_mesh, PP_DIM)
|
||||
|
||||
sub_model_zoo = model_zoo.get_sub_registry('transformers_llama')
|
||||
|
||||
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
||||
org_model, sharded_model = build_pipeline_model(model_fn, stage_manager, enable_fused_normalization,
|
||||
enable_tensor_parallelism, use_lazy_init)
|
||||
check_llama_model_policy(name, org_model, stage_manager)
|
||||
check_llama_model_pipeline_forward(name, sharded_model, stage_manager)
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
def check_llama(rank, world_size, port):
|
||||
disable_existing_loggers()
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
run_llama_test()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
@clear_cache_before_run()
|
||||
def test_llama():
|
||||
spawn(check_llama, 2)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_llama()
|
|
@ -1,64 +1,129 @@
|
|||
import copy
|
||||
import os
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
from torch import distributed as dist
|
||||
|
||||
import colossalai
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.testing import (
|
||||
assert_hf_output_close,
|
||||
clear_cache_before_run,
|
||||
parameterize,
|
||||
rerun_if_address_is_in_use,
|
||||
spawn,
|
||||
)
|
||||
from colossalai.tensor.d_tensor.api import clear_layout_converter
|
||||
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
from tests.test_shardformer.test_model._utils import build_model, check_grad, check_state_dict, run_forward
|
||||
from tests.test_shardformer.test_model._utils import (
|
||||
build_model_from_hybrid_plugin,
|
||||
check_grad,
|
||||
check_loss,
|
||||
check_output_hidden_state,
|
||||
check_weight,
|
||||
run_forward_backward_with_hybrid_plugin,
|
||||
)
|
||||
|
||||
os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = 'true'
|
||||
|
||||
|
||||
def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn):
|
||||
org_output, org_loss, shard_output, shard_loss = run_forward(org_model, sharded_model, data_gen_fn,
|
||||
output_transform_fn, loss_fn)
|
||||
assert_hf_output_close(org_output, shard_output, ignore_keys=['past_key_values'], rtol=1e-5)
|
||||
def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config):
|
||||
|
||||
# run backward
|
||||
org_loss.backward()
|
||||
shard_loss.backward()
|
||||
org_model, org_optimizer, sharded_model, sharded_optimizer, criterion, booster = \
|
||||
build_model_from_hybrid_plugin(model_fn, loss_fn, test_config)
|
||||
|
||||
assert torch.allclose(org_loss, shard_loss,
|
||||
atol=1e-5), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}"
|
||||
org_loss, org_output, sharded_loss, sharded_output = \
|
||||
run_forward_backward_with_hybrid_plugin(
|
||||
org_model,
|
||||
sharded_model,
|
||||
sharded_optimizer,
|
||||
data_gen_fn,
|
||||
output_transform_fn,
|
||||
criterion,
|
||||
booster)
|
||||
|
||||
stage_manager = booster.plugin.stage_manager
|
||||
tp_group = booster.plugin.tp_group
|
||||
|
||||
# check last hidden state & loss
|
||||
if stage_manager is None or stage_manager.is_last_stage():
|
||||
|
||||
if org_model.__class__.__name__ == 'OPTModel':
|
||||
check_output_hidden_state(org_output, sharded_output, stage_manager, atol=1e-5, rtol=1e-3)
|
||||
|
||||
check_loss(org_loss, sharded_loss, atol=1e-6, rtol=1e-3)
|
||||
|
||||
# unwrap model
|
||||
if hasattr(org_model, 'model'):
|
||||
opt_model = org_model.model
|
||||
shard_opt_model = sharded_model.model
|
||||
else:
|
||||
if org_model.__class__.__name__ == 'OPTModel':
|
||||
opt_model = org_model
|
||||
shard_opt_model = sharded_model
|
||||
shard_opt_model = sharded_model.unwrap()
|
||||
else:
|
||||
opt_model = org_model.model
|
||||
shard_opt_model = sharded_model.unwrap().model
|
||||
|
||||
# check grad
|
||||
col_layer_for_check = ['decoder.layers[0].self_attn.q_proj', 'decoder.embed_tokens']
|
||||
row_layer_for_check = ['decoder.layers[0].self_attn.out_proj']
|
||||
check_grad(opt_model, shard_opt_model, col_layer_for_check, atol=1e-6, rtol=1e-3, dim=0, verbose=False)
|
||||
check_grad(opt_model, shard_opt_model, row_layer_for_check, atol=1e-6, rtol=1e-3, dim=1, verbose=False)
|
||||
row_layer_for_check = ['decoder.layers[0].self_attn.q_proj', 'decoder.embed_tokens']
|
||||
col_layer_for_check = ['decoder.layers[0].self_attn.out_proj']
|
||||
if stage_manager is None or stage_manager.is_first_stage():
|
||||
check_grad(opt_model,
|
||||
shard_opt_model,
|
||||
row_layer_for_check,
|
||||
tp_group,
|
||||
atol=1e-6,
|
||||
rtol=1e-3,
|
||||
dim=0,
|
||||
verbose=False)
|
||||
check_grad(opt_model,
|
||||
shard_opt_model,
|
||||
col_layer_for_check,
|
||||
tp_group,
|
||||
atol=1e-6,
|
||||
rtol=1e-3,
|
||||
dim=1,
|
||||
verbose=False)
|
||||
|
||||
# check weights after optimizer.step()
|
||||
org_optimizer.step()
|
||||
sharded_optimizer.step()
|
||||
if stage_manager is None or stage_manager.is_first_stage():
|
||||
check_weight(opt_model,
|
||||
shard_opt_model,
|
||||
col_layer_for_check,
|
||||
tp_group,
|
||||
atol=1e-3,
|
||||
rtol=1e-3,
|
||||
dim=1,
|
||||
verbose=False)
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
@parameterize('use_lazy_init', [False, True])
|
||||
@parameterize('enable_fused_normalization', [True, False])
|
||||
@parameterize('enable_tensor_parallelism', [True, False])
|
||||
@parameterize('enable_flash_attention', [True, False])
|
||||
@parameterize('enable_jit_fused', [True, False])
|
||||
def run_opt_test(use_lazy_init, enable_fused_normalization, enable_tensor_parallelism, enable_flash_attention,
|
||||
enable_jit_fused):
|
||||
@parameterize('test_config', [{
|
||||
'tp_size': 2,
|
||||
'pp_size': 2,
|
||||
'num_microbatches': 4,
|
||||
'enable_fused_normalization': True,
|
||||
'use_lazy_init': True
|
||||
}, {
|
||||
'tp_size': 1,
|
||||
'pp_size': 2,
|
||||
'num_microbatches': 4,
|
||||
'enable_fused_normalization': False,
|
||||
'use_lazy_init': False
|
||||
}, {
|
||||
'tp_size': 4,
|
||||
'pp_size': 1,
|
||||
'enable_fused_normalization': True,
|
||||
'use_lazy_init': False
|
||||
}])
|
||||
def run_opt_test(test_config):
|
||||
|
||||
# TODO: add test_config for TP+DP after supporting & debugging it
|
||||
# {'tp_size': 2, 'pp_size': 1, 'enable_fused_normalization': True}
|
||||
|
||||
# TODO: add test_config for flash attention & jit operator after supporting
|
||||
|
||||
sub_model_zoo = model_zoo.get_sub_registry('transformers_opt')
|
||||
test_config['precision'] = 'float' # Do not use fp16/bf16 in testing
|
||||
|
||||
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
||||
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism,
|
||||
enable_flash_attention, enable_jit_fused, use_lazy_init)
|
||||
check_state_dict(org_model, sharded_model, name=name)
|
||||
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
|
||||
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
|
||||
|
||||
clear_layout_converter()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
|
|
|
@ -1,70 +0,0 @@
|
|||
import pytest
|
||||
import torch
|
||||
|
||||
import colossalai
|
||||
from colossalai.cluster import ProcessGroupMesh
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
from tests.test_shardformer.test_model._utils import build_pipeline_model
|
||||
|
||||
|
||||
def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn):
|
||||
# TODO: add tests for forward/backward later
|
||||
pass
|
||||
|
||||
|
||||
@parameterize('enable_tensor_parallelism', [False])
|
||||
@parameterize('enable_fused_normalization', [False])
|
||||
@parameterize('use_lazy_init', [False])
|
||||
#TODO: merge this into test_shard_opt
|
||||
def run_opt_test(enable_fused_normalization, enable_tensor_parallelism, use_lazy_init):
|
||||
DP_DIM, PP_DIM = 0, 1
|
||||
DP_SIZE, PP_SIZE = 2, 2
|
||||
pg_mesh = ProcessGroupMesh(DP_SIZE, PP_SIZE)
|
||||
stage_manager = PipelineStageManager(pg_mesh, PP_DIM)
|
||||
|
||||
sub_model_zoo = model_zoo.get_sub_registry('transformers_opt')
|
||||
for name, (model_fn, data_gen_fn, _, _, _) in sub_model_zoo.items():
|
||||
inputs = data_gen_fn()
|
||||
inputs = {k: v.cuda() for k, v in inputs.items()}
|
||||
input_ids, _ = inputs['input_ids'], inputs['attention_mask']
|
||||
batch_size, seq_len = input_ids.shape
|
||||
hidden_size = 128
|
||||
hidden_state_shape = (batch_size, seq_len, hidden_size)
|
||||
|
||||
if not stage_manager.is_first_stage():
|
||||
# change inputs if not the first stage
|
||||
|
||||
hidden_states = torch.zeros(*hidden_state_shape).cuda()
|
||||
inputs['input_ids'] = None
|
||||
inputs['hidden_states'] = hidden_states
|
||||
|
||||
_, sharded_model = build_pipeline_model(model_fn, stage_manager, enable_fused_normalization,
|
||||
enable_tensor_parallelism, use_lazy_init)
|
||||
sharded_model.train()
|
||||
|
||||
output = sharded_model(**inputs)
|
||||
if stage_manager.is_last_stage():
|
||||
assert output[0] is not None
|
||||
else:
|
||||
assert output['hidden_states'].shape == hidden_state_shape
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
def check_opt(rank, world_size, port):
|
||||
disable_existing_loggers()
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
run_opt_test()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
@clear_cache_before_run()
|
||||
def test_opt():
|
||||
spawn(check_opt, 4)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_opt()
|
|
@ -1,60 +1,127 @@
|
|||
import os
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
import colossalai
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.testing import (
|
||||
assert_hf_output_close,
|
||||
clear_cache_before_run,
|
||||
parameterize,
|
||||
rerun_if_address_is_in_use,
|
||||
spawn,
|
||||
)
|
||||
from colossalai.shardformer.layer.utils import Randomizer
|
||||
from colossalai.tensor.d_tensor.api import clear_layout_converter
|
||||
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
from tests.test_shardformer.test_model._utils import build_model, check_grad, run_forward
|
||||
from tests.test_shardformer.test_model._utils import (
|
||||
build_model_from_hybrid_plugin,
|
||||
check_grad,
|
||||
check_loss,
|
||||
check_output_hidden_state,
|
||||
check_weight,
|
||||
run_forward_backward_with_hybrid_plugin,
|
||||
)
|
||||
|
||||
|
||||
def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn):
|
||||
# check forward
|
||||
org_output, org_loss, shard_output, shard_loss = run_forward(org_model, sharded_model, data_gen_fn,
|
||||
output_transform_fn, loss_fn)
|
||||
def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config):
|
||||
|
||||
assert_hf_output_close(org_output, shard_output, atol=1e-3, rtol=1e-3)
|
||||
org_model, org_optimizer, sharded_model, sharded_optimizer, criterion, booster = \
|
||||
build_model_from_hybrid_plugin(model_fn, loss_fn, test_config)
|
||||
|
||||
# do backward
|
||||
org_loss.backward()
|
||||
shard_loss.backward()
|
||||
org_loss, org_output, sharded_loss, sharded_output = \
|
||||
run_forward_backward_with_hybrid_plugin(
|
||||
org_model,
|
||||
sharded_model,
|
||||
sharded_optimizer,
|
||||
data_gen_fn,
|
||||
output_transform_fn,
|
||||
criterion,
|
||||
booster)
|
||||
|
||||
assert torch.allclose(org_loss, shard_loss,
|
||||
atol=1e-5), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}"
|
||||
stage_manager = booster.plugin.stage_manager
|
||||
tp_group = booster.plugin.tp_group
|
||||
|
||||
# check last hidden state & loss
|
||||
if stage_manager is None or stage_manager.is_last_stage():
|
||||
|
||||
if org_model.__class__.__name__ == 'ViTModel':
|
||||
check_output_hidden_state(org_output, sharded_output, stage_manager, atol=1e-5, rtol=1e-3)
|
||||
|
||||
check_loss(org_loss, sharded_loss, atol=1e-6, rtol=1e-3)
|
||||
|
||||
# unwrap model
|
||||
if org_model.__class__.__name__ == 'ViTModel':
|
||||
vit_model = org_model
|
||||
shard_vit_model = sharded_model
|
||||
shard_vit_model = sharded_model.unwrap()
|
||||
else:
|
||||
vit_model = org_model.vit
|
||||
shard_vit_model = sharded_model.vit
|
||||
shard_vit_model = sharded_model.unwrap().vit
|
||||
|
||||
# check grad
|
||||
col_layer_for_check = ['encoder.layer[0].attention.attention.query']
|
||||
row_layer_for_check = ['encoder.layer[0].attention.output.dense']
|
||||
check_grad(vit_model, shard_vit_model, col_layer_for_check, atol=1e-5, rtol=1e-3, dim=0, verbose=False)
|
||||
check_grad(vit_model, shard_vit_model, row_layer_for_check, atol=1e-5, rtol=1e-3, dim=1, verbose=False)
|
||||
row_layer_for_check = ['encoder.layer[0].attention.attention.query', 'embeddings.patch_embeddings.projection']
|
||||
col_layer_for_check = ['encoder.layer[0].attention.output.dense']
|
||||
if stage_manager is None or stage_manager.is_first_stage():
|
||||
check_grad(vit_model,
|
||||
shard_vit_model,
|
||||
row_layer_for_check,
|
||||
tp_group,
|
||||
atol=1e-5,
|
||||
rtol=1e-3,
|
||||
dim=0,
|
||||
verbose=False)
|
||||
check_grad(vit_model,
|
||||
shard_vit_model,
|
||||
col_layer_for_check,
|
||||
tp_group,
|
||||
atol=1e-5,
|
||||
rtol=1e-3,
|
||||
dim=1,
|
||||
verbose=False)
|
||||
|
||||
# check weights after optimizer.step()
|
||||
org_optimizer.step()
|
||||
sharded_optimizer.step()
|
||||
if stage_manager is None or stage_manager.is_first_stage():
|
||||
check_weight(vit_model,
|
||||
shard_vit_model,
|
||||
col_layer_for_check,
|
||||
tp_group,
|
||||
atol=5e-3,
|
||||
rtol=1e-3,
|
||||
dim=1,
|
||||
verbose=False)
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
@parameterize('enable_fused_normalization', [True, False])
|
||||
@parameterize('enable_tensor_parallelism', [True, False])
|
||||
@parameterize('enable_flash_attention', [True, False])
|
||||
@parameterize('enable_jit_fused', [True, False])
|
||||
def run_vit_test(enable_fused_normalization, enable_tensor_parallelism, enable_flash_attention, enable_jit_fused):
|
||||
@parameterize('test_config', [{
|
||||
'tp_size': 2,
|
||||
'pp_size': 2,
|
||||
'num_microbatches': 4,
|
||||
'enable_fused_normalization': True,
|
||||
'use_lazy_init': False
|
||||
}, {
|
||||
'tp_size': 1,
|
||||
'pp_size': 2,
|
||||
'num_microbatches': 4,
|
||||
'enable_fused_normalization': False,
|
||||
'use_lazy_init': False
|
||||
}, {
|
||||
'tp_size': 4,
|
||||
'pp_size': 1,
|
||||
'enable_fused_normalization': True,
|
||||
'use_lazy_init': False
|
||||
}])
|
||||
def run_vit_test(test_config):
|
||||
|
||||
# TODO: add test_config for TP+DP after supporting & debugging it
|
||||
# {'tp_size': 2, 'pp_size': 1, 'enable_fused_normalization': True}
|
||||
|
||||
# TODO: add test_config for flash attention & jit operator after supporting
|
||||
# TODO: fix bug when settign lazy_init for Conv2D Layers in ViT models
|
||||
|
||||
sub_model_zoo = model_zoo.get_sub_registry('transformers_vit')
|
||||
test_config['precision'] = 'float' # Do not use fp16/bf16 in testing
|
||||
|
||||
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
||||
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism,
|
||||
enable_flash_attention, enable_jit_fused)
|
||||
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
|
||||
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
|
||||
|
||||
clear_layout_converter()
|
||||
Randomizer.reset_index()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
|
@ -68,7 +135,7 @@ def check_vit(rank, world_size, port):
|
|||
@rerun_if_address_is_in_use()
|
||||
@clear_cache_before_run()
|
||||
def test_vit():
|
||||
spawn(check_vit, 2)
|
||||
spawn(check_vit, 4)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
@ -1,74 +0,0 @@
|
|||
import pytest
|
||||
import torch
|
||||
|
||||
import colossalai
|
||||
from colossalai.cluster import ProcessGroupMesh
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
from tests.test_shardformer.test_model._utils import build_pipeline_model
|
||||
|
||||
|
||||
def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn):
|
||||
# TODO: add tests for forward/backward later
|
||||
pass
|
||||
|
||||
|
||||
@parameterize('enable_tensor_parallelism', [False])
|
||||
@parameterize('enable_fused_normalization', [False])
|
||||
@parameterize('use_lazy_init', [False])
|
||||
#TODO: merge this into test_shard_vit
|
||||
def run_vit_test(enable_fused_normalization, enable_tensor_parallelism, use_lazy_init):
|
||||
DP_DIM, PP_DIM = 0, 1
|
||||
DP_SIZE, PP_SIZE = 2, 2
|
||||
pg_mesh = ProcessGroupMesh(DP_SIZE, PP_SIZE)
|
||||
stage_manager = PipelineStageManager(pg_mesh, PP_DIM)
|
||||
|
||||
sub_model_zoo = model_zoo.get_sub_registry('transformers_vit')
|
||||
|
||||
for name, (model_fn, data_gen_fn, _, _, _) in sub_model_zoo.items():
|
||||
|
||||
inputs = data_gen_fn()
|
||||
inputs = {k: v.cuda() for k, v in inputs.items()}
|
||||
pixel_values = inputs['pixel_values']
|
||||
batch_size = len(pixel_values)
|
||||
hidden_size = 768
|
||||
hidden_state_shape = (batch_size, 197, hidden_size)
|
||||
|
||||
if not stage_manager.is_first_stage():
|
||||
# change inputs if not the first stage
|
||||
hidden_states = torch.randn(*hidden_state_shape).cuda()
|
||||
# inputs['pixel_values'] = None
|
||||
inputs['hidden_states'] = hidden_states
|
||||
|
||||
_, sharded_model = build_pipeline_model(model_fn, stage_manager, enable_fused_normalization,
|
||||
enable_tensor_parallelism, use_lazy_init)
|
||||
sharded_model.train()
|
||||
|
||||
output = sharded_model(**inputs)
|
||||
if stage_manager.is_last_stage():
|
||||
if name != 'transformers_vit':
|
||||
assert output.loss is not None
|
||||
else:
|
||||
assert output['hidden_states'].shape == hidden_state_shape, \
|
||||
f'hidden_states shape is not correct, output:{output["hidden_states"].shape} is not equal to hidden_state:{hidden_state_shape}'
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
def check_vit(rank, world_size, port):
|
||||
disable_existing_loggers()
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
run_vit_test()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
@clear_cache_before_run()
|
||||
def test_vit():
|
||||
spawn(check_vit, 4)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_vit()
|
Loading…
Reference in New Issue