|
|
|
import gc
|
|
|
|
import random
|
|
|
|
import re
|
|
|
|
import socket
|
|
|
|
from functools import partial
|
|
|
|
from inspect import signature
|
|
|
|
from typing import Any, Callable, List
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.multiprocessing as mp
|
|
|
|
from packaging import version
|
|
|
|
|
|
|
|
|
|
|
|
def parameterize(argument: str, values: List[Any]) -> Callable:
|
|
|
|
"""
|
|
|
|
This function is to simulate the same behavior as pytest.mark.parameterize. As
|
|
|
|
we want to avoid the number of distributed network initialization, we need to have
|
|
|
|
this extra decorator on the function launched by torch.multiprocessing.
|
|
|
|
|
|
|
|
If a function is wrapped with this wrapper, non-parametrized arguments must be keyword arguments,
|
|
|
|
positional arguments are not allowed.
|
|
|
|
|
|
|
|
Usage::
|
|
|
|
|
|
|
|
# Example 1:
|
|
|
|
@parameterize('person', ['xavier', 'davis'])
|
|
|
|
def say_something(person, msg):
|
|
|
|
print(f'{person}: {msg}')
|
|
|
|
|
|
|
|
say_something(msg='hello')
|
|
|
|
|
|
|
|
# This will generate output:
|
|
|
|
# > xavier: hello
|
|
|
|
# > davis: hello
|
|
|
|
|
|
|
|
# Example 2:
|
|
|
|
@parameterize('person', ['xavier', 'davis'])
|
|
|
|
@parameterize('msg', ['hello', 'bye', 'stop'])
|
|
|
|
def say_something(person, msg):
|
|
|
|
print(f'{person}: {msg}')
|
|
|
|
|
|
|
|
say_something()
|
|
|
|
|
|
|
|
# This will generate output:
|
|
|
|
# > xavier: hello
|
|
|
|
# > xavier: bye
|
|
|
|
# > xavier: stop
|
|
|
|
# > davis: hello
|
|
|
|
# > davis: bye
|
|
|
|
# > davis: stop
|
|
|
|
|
|
|
|
Args:
|
|
|
|
argument (str): the name of the argument to parameterize
|
|
|
|
values (List[Any]): a list of values to iterate for this argument
|
|
|
|
"""
|
|
|
|
|
|
|
|
def _wrapper(func):
|
|
|
|
|
|
|
|
def _execute_function_by_param(**kwargs):
|
|
|
|
for val in values:
|
|
|
|
arg_map = {argument: val}
|
|
|
|
partial_func = partial(func, **arg_map)
|
|
|
|
partial_func(**kwargs)
|
|
|
|
|
|
|
|
return _execute_function_by_param
|
|
|
|
|
|
|
|
return _wrapper
|
|
|
|
|
|
|
|
|
|
|
|
def rerun_on_exception(exception_type: Exception = Exception, pattern: str = None, max_try: int = 5) -> Callable:
|
|
|
|
"""
|
|
|
|
A decorator on a function to re-run when an exception occurs.
|
|
|
|
|
|
|
|
Usage::
|
|
|
|
|
|
|
|
# rerun for all kinds of exception
|
|
|
|
@rerun_on_exception()
|
|
|
|
def test_method():
|
|
|
|
print('hey')
|
|
|
|
raise RuntimeError('Address already in use')
|
|
|
|
|
|
|
|
# rerun for RuntimeError only
|
|
|
|
@rerun_on_exception(exception_type=RuntimeError)
|
|
|
|
def test_method():
|
|
|
|
print('hey')
|
|
|
|
raise RuntimeError('Address already in use')
|
|
|
|
|
|
|
|
# rerun for maximum 10 times if Runtime error occurs
|
|
|
|
@rerun_on_exception(exception_type=RuntimeError, max_try=10)
|
|
|
|
def test_method():
|
|
|
|
print('hey')
|
|
|
|
raise RuntimeError('Address already in use')
|
|
|
|
|
|
|
|
# rerun for infinite times if Runtime error occurs
|
|
|
|
@rerun_on_exception(exception_type=RuntimeError, max_try=None)
|
|
|
|
def test_method():
|
|
|
|
print('hey')
|
|
|
|
raise RuntimeError('Address already in use')
|
|
|
|
|
|
|
|
# rerun only the exception message is matched with pattern
|
|
|
|
# for infinite times if Runtime error occurs
|
|
|
|
@rerun_on_exception(exception_type=RuntimeError, pattern="^Address.*$")
|
|
|
|
def test_method():
|
|
|
|
print('hey')
|
|
|
|
raise RuntimeError('Address already in use')
|
|
|
|
|
|
|
|
Args:
|
|
|
|
exception_type (Exception, Optional): The type of exception to detect for rerun
|
|
|
|
pattern (str, Optional): The pattern to match the exception message.
|
|
|
|
If the pattern is not None and matches the exception message,
|
|
|
|
the exception will be detected for rerun
|
|
|
|
max_try (int, Optional): Maximum reruns for this function. The default value is 5.
|
|
|
|
If max_try is None, it will rerun forever if exception keeps occurring
|
|
|
|
"""
|
|
|
|
|
|
|
|
def _match_lines(lines, pattern):
|
|
|
|
for line in lines:
|
|
|
|
if re.match(pattern, line):
|
|
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
|
|
def _wrapper(func):
|
|
|
|
|
|
|
|
def _run_until_success(*args, **kwargs):
|
|
|
|
try_count = 0
|
|
|
|
assert max_try is None or isinstance(max_try, int), \
|
|
|
|
f'Expected max_try to be None or int, but got {type(max_try)}'
|
|
|
|
|
|
|
|
while max_try is None or try_count < max_try:
|
|
|
|
try:
|
|
|
|
try_count += 1
|
|
|
|
ret = func(*args, **kwargs)
|
|
|
|
return ret
|
|
|
|
except exception_type as e:
|
|
|
|
error_lines = str(e).split('\n')
|
|
|
|
if try_count < max_try and (pattern is None or _match_lines(error_lines, pattern)):
|
|
|
|
print('Exception is caught, retrying...')
|
|
|
|
# when pattern is not specified, we always skip the exception
|
|
|
|
# when pattern is specified, we only skip when pattern is matched
|
|
|
|
continue
|
|
|
|
else:
|
|
|
|
print('Maximum number of attempts is reached or pattern is not matched, no more retrying...')
|
|
|
|
raise e
|
|
|
|
|
|
|
|
# Override signature
|
|
|
|
# otherwise pytest.mark.parameterize will raise the following error:
|
|
|
|
# function does not use argument xxx
|
|
|
|
sig = signature(func)
|
|
|
|
_run_until_success.__signature__ = sig
|
|
|
|
|
|
|
|
return _run_until_success
|
|
|
|
|
|
|
|
return _wrapper
|
|
|
|
|
|
|
|
|
|
|
|
def rerun_if_address_is_in_use():
|
|
|
|
"""
|
|
|
|
This function reruns a wrapped function if "address already in use" occurs
|
|
|
|
in testing spawned with torch.multiprocessing
|
|
|
|
|
|
|
|
Usage::
|
|
|
|
|
|
|
|
@rerun_if_address_is_in_use()
|
|
|
|
def test_something():
|
|
|
|
...
|
|
|
|
|
|
|
|
"""
|
|
|
|
# check version
|
|
|
|
torch_version = version.parse(torch.__version__)
|
|
|
|
assert torch_version.major >= 1
|
|
|
|
|
|
|
|
# only torch >= 1.8 has ProcessRaisedException
|
|
|
|
if torch_version >= version.parse("1.8.0"):
|
|
|
|
exception = torch.multiprocessing.ProcessRaisedException
|
|
|
|
else:
|
|
|
|
exception = Exception
|
|
|
|
|
|
|
|
func_wrapper = rerun_on_exception(exception_type=exception, pattern=".*Address already in use.*")
|
|
|
|
return func_wrapper
|
|
|
|
|
|
|
|
|
|
|
|
def skip_if_not_enough_gpus(min_gpus: int):
|
|
|
|
"""
|
|
|
|
This function is used to check the number of available GPUs on the system and
|
|
|
|
automatically skip the test cases which require more GPUs.
|
|
|
|
|
|
|
|
Note:
|
|
|
|
The wrapped function must have `world_size` in its keyword argument.
|
|
|
|
|
|
|
|
Usage:
|
|
|
|
@skip_if_not_enough_gpus(min_gpus=8)
|
|
|
|
def test_something():
|
|
|
|
# will be skipped if there are fewer than 8 GPUs available
|
|
|
|
do_something()
|
|
|
|
|
|
|
|
Arg:
|
|
|
|
min_gpus (int): the minimum number of GPUs required to run this test.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def _wrap_func(f):
|
|
|
|
|
|
|
|
def _execute_by_gpu_num(*args, **kwargs):
|
|
|
|
num_avail_gpu = torch.cuda.device_count()
|
|
|
|
if num_avail_gpu >= min_gpus:
|
|
|
|
f(*args, **kwargs)
|
|
|
|
|
|
|
|
return _execute_by_gpu_num
|
|
|
|
|
|
|
|
return _wrap_func
|
|
|
|
|
|
|
|
|
|
|
|
def free_port() -> int:
|
|
|
|
"""Get a free port on localhost.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
int: A free port on localhost.
|
|
|
|
"""
|
|
|
|
while True:
|
|
|
|
port = random.randint(20000, 65000)
|
|
|
|
try:
|
|
|
|
with socket.socket() as sock:
|
|
|
|
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
|
|
|
|
sock.bind(("localhost", port))
|
|
|
|
return port
|
|
|
|
except OSError:
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
|
|
def spawn(func, nprocs=1, **kwargs):
|
|
|
|
"""
|
|
|
|
This function is used to spawn processes for testing.
|
|
|
|
|
|
|
|
Usage:
|
|
|
|
# must contains arguments rank, world_size, port
|
|
|
|
def do_something(rank, world_size, port):
|
|
|
|
...
|
|
|
|
|
|
|
|
spawn(do_something, nprocs=8)
|
|
|
|
|
|
|
|
# can also pass other arguments
|
|
|
|
def do_something(rank, world_size, port, arg1, arg2):
|
|
|
|
...
|
|
|
|
|
|
|
|
spawn(do_something, nprocs=8, arg1=1, arg2=2)
|
|
|
|
|
|
|
|
Args:
|
|
|
|
func (Callable): The function to be spawned.
|
|
|
|
nprocs (int, optional): The number of processes to spawn. Defaults to 1.
|
|
|
|
"""
|
|
|
|
port = free_port()
|
|
|
|
wrapped_func = partial(func, world_size=nprocs, port=port, **kwargs)
|
|
|
|
mp.spawn(wrapped_func, nprocs=nprocs)
|
|
|
|
|
|
|
|
|
|
|
|
def clear_cache_before_run():
|
|
|
|
"""
|
|
|
|
This function is a wrapper to clear CUDA and python cache before executing the function.
|
|
|
|
|
|
|
|
Usage:
|
|
|
|
@clear_cache_before_run()
|
|
|
|
def test_something():
|
|
|
|
...
|
|
|
|
"""
|
|
|
|
|
|
|
|
def _wrap_func(f):
|
|
|
|
|
|
|
|
def _clear_cache(*args, **kwargs):
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
torch.cuda.reset_peak_memory_stats()
|
|
|
|
torch.cuda.reset_max_memory_allocated()
|
|
|
|
torch.cuda.reset_max_memory_cached()
|
|
|
|
torch.cuda.synchronize()
|
|
|
|
gc.collect()
|
|
|
|
f(*args, **kwargs)
|
|
|
|
|
|
|
|
return _clear_cache
|
|
|
|
|
|
|
|
return _wrap_func
|