ColossalAI/examples/language/gpt/hybridparallelism/finetune.py

329 lines
11 KiB
Python
Raw Normal View History

import argparse
[FP8] rebase main (#5963) * add SimPO * fix dataloader * remove debug code * add orpo * fix style * fix colossalai, transformers version * fix colossalai, transformers version * fix colossalai, transformers version * fix torch colossalai version * update transformers version * [shardformer] DeepseekMoE support (#5871) * [Feature] deepseek moe expert parallel implement * [misc] fix typo, remove redundant file (#5867) * [misc] fix typo * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] deepseek support & unit test * [misc] remove debug code & useless print * [misc] fix typos (#5872) * [Feature] remove modeling file, use auto config. (#5884) * [misc] fix typos * [Feature] deepseek support via auto model, remove modeling file * [misc] delete useless file * [misc] fix typos * [Deepseek] remove redundant code (#5888) * [misc] fix typos * [Feature] deepseek support via auto model, remove modeling file * [misc] delete useless file * [misc] fix typos * [misc] remove redundant code * [Feature/deepseek] resolve comment. (#5889) * [misc] fix typos * [Feature] deepseek support via auto model, remove modeling file * [misc] delete useless file * [misc] fix typos * [misc] remove redundant code * [misc] mv module replacement into if branch * [misc] add some warning message and modify some code in unit test * [misc] fix typos --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Hoxfix] Fix CUDA_DEVICE_MAX_CONNECTIONS for comm overlap Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [Feat] Diffusion Model(PixArtAlpha/StableDiffusion3) Support (#5838) * Diffusion Model Inference support * Stable Diffusion 3 Support * pixartalpha support * [HotFix] CI,import,requirements-test for #5838 (#5892) * [Hot Fix] CI,import,requirements-test --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] Enable PP + SP for llama (#5868) * fix cross-PP-stage position id length diff bug * fix typo * fix typo * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * use a one cross entropy func for all shardformer models --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [ShardFormer] Add Ulysses Sequence Parallelism support for Command-R, Qwen2 and ChatGLM (#5897) * add benchmark for sft, dpo, simpo, orpo. Add benchmarking result. Support lora with gradient checkpoint * fix style * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix eval * hotfix citation * [zero] support all-gather overlap (#5898) * [zero] support all-gather overlap * [zero] add overlap all-gather flag * [misc] fix typo * [zero] update api * fix orpo cross entropy loss * [Auto Parallel]: Speed up intra-op plan generation by 44% (#5446) * Remove unnecessary calls to deepcopy * Build DimSpec's difference dict only once This change considerably speeds up construction speed of DimSpec objects. The difference_dict is the same for each DimSpec object, so a single copy of it is enough. * Fix documentation of DimSpec's difference method * [ShardFormer] fix qwen2 sp (#5903) * [compatibility] support torch 2.2 (#5875) * Support Pytorch 2.2.2 * keep build_on_pr file and update .compatibility * fix object_to_tensor usage when torch>=2.3.0 (#5820) * [misc] support torch2.3 (#5893) * [misc] support torch2.3 * [devops] update compatibility ci * [devops] update compatibility ci * [devops] add debug * [devops] add debug * [devops] add debug * [devops] add debug * [devops] remove debug * [devops] remove debug * [release] update version (#5912) * [plugin] support all-gather overlap for hybrid parallel (#5919) * [plugin] fixed all-gather overlap support for hybrid parallel * add kto * fix style, add kto data sample * [Examples] Add lazy init to OPT and GPT examples (#5924) Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [ColossalChat] Hotfix for ColossalChat (#5910) * add ignore and tiny llama * fix path issue * run style * fix issue * update bash * add ignore and tiny llama * fix path issue * run style * fix issue * update bash * fix ddp issue * add Qwen 1.5 32B * refactor tokenization * [FIX BUG] UnboundLocalError: cannot access local variable 'default_conversation' where it is not associated with a value (#5931) * cannot access local variable 'default_conversation' where it is not associated with a value set default value for 'default_conversation' * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * fix test data * refactor evaluation * remove real data path * remove real data path * Add n_fused as an input from native_module (#5894) * [FIX BUG] convert env param to int in (#5934) * [Hotfix] Fix ZeRO typo #5936 Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [Feature] Add a switch to control whether the model checkpoint needs to be saved after each epoch ends (#5941) * Add a switch to control whether the model checkpoint needs to be saved after each epoch ends * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * fix style * fix style * fix style * [shardformer] hotfix attn mask (#5945) * [shardformer] hotfix attn mask (#5947) * [Feat] Distrifusion Acceleration Support for Diffusion Inference (#5895) * Distrifusion Support source * comp comm overlap optimization * sd3 benchmark * pixart distrifusion bug fix * sd3 bug fix and benchmark * generation bug fix * naming fix * add docstring, fix counter and shape error * add reference * readme and requirement * [zero] hotfix update master params (#5951) * [release] update version (#5952) * [Chat] Fix lora (#5946) * fix merging * remove filepath * fix style * Update README.md (#5958) * [hotfix] Remove unused plan section (#5957) * remove readme * fix readme * update * [test] add mixtral for sequence classification * [test] add mixtral transformer test * [moe] fix plugin * [test] mixtra pp shard test * [chore] handle non member group * [zero] solve hang * [test] pass mixtral shardformer test * [moe] implement transit between non moe tp and ep * [zero] solve hang * [misc] solve booster hang by rename the variable * solve hang when parallel mode = pp + dp * [moe] implement submesh initialization * [moe] add mixtral dp grad scaling when not all experts are activated * [chore] manually revert unintended commit * [chore] trivial fix * [chore] arg pass & remove drop token * [test] add mixtral modelling test * [moe] implement tp * [moe] test deepseek * [moe] clean legacy code * [Feature] MoE Ulysses Support (#5918) * moe sp support * moe sp bug solve * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [chore] minor fix * [moe] init moe plugin comm setting with sp * moe sp + ep bug fix * [moe] finalize test (no pp) * [moe] full test for deepseek and mixtral (pp + sp to fix) * [chore] minor fix after rebase * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [chore] solve moe ckpt test failure and some other arg pass failure * [moe] remove ops * [test] fix test: test_zero1_2 * [bug] fix: somehow logger hangs the program * [moe] deepseek moe sp support * [test] add check * [deepseek] replace attn (a workaround for bug in transformers) * [misc] skip redunant test * [misc] remove debug/print code * [moe] refactor mesh assignment * Revert "[moe] implement submesh initialization" This reverts commit 2f9bce6686d1415a83d5726dc5ff02222c742582. * [chore] change moe_pg_mesh to private * [misc] remove incompatible test config * [misc] fix ci failure: change default value to false in moe plugin * [misc] remove useless condition * [chore] docstring * [moe] remove force_overlap_comm flag and add warning instead * [doc] add MoeHybridParallelPlugin docstring * [moe] solve dp axis issue * [chore] remove redundant test case, print string & reduce test tokens * [feat] Dist Loader for Eval (#5950) * support auto distributed data loader * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * support auto distributed data loader * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix tp error * remove unused parameters * remove unused * update inference * update docs * update inference --------- Co-authored-by: Michelle <qianranma8@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [lora] lora support hybrid parallel plugin (#5956) * lora support hybrid plugin * fix * fix * fix * fix * fp8 operators for compressed communication cast_to_fp8, cast_from_fp8, all_reduce_fp8 * fix scaling algorithm in FP8 casting * support fp8 communication in pipeline parallelism * add fp8_communication flag in the script * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix typo * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * shardformer fp8 * fix rebase * remove all to all * fix shardformer fp8 communication training degradation * [fp8] support all-gather flat tensor (#5932) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * Update low_level_optim.py --------- Co-authored-by: YeAnbang <anbangy2@outlook.com> Co-authored-by: Haze188 <haze188@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com> Co-authored-by: Guangyao Zhang <xjtu521@qq.com> Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com> Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: zhurunhua <1281592874@qq.com> Co-authored-by: Insu Jang <insujang@umich.edu> Co-authored-by: Gao, Ruiyuan <905370712@qq.com> Co-authored-by: hxwang <wang1570@e.ntu.edu.sg> Co-authored-by: Michelle <qianranma8@gmail.com> Co-authored-by: Wang Binluo <32676639+wangbluo@users.noreply.github.com> Co-authored-by: HangXu <hangxu0304@gmail.com>
2024-08-06 08:29:37 +00:00
from contextlib import nullcontext
from typing import Callable, List, Union
import evaluate
import torch
import torch.distributed as dist
import torch.nn as nn
from data import GLUEDataBuilder
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoConfig, GPT2ForSequenceClassification, get_linear_schedule_with_warmup
import colossalai
from colossalai.accelerator import get_accelerator
from colossalai.booster import Booster
from colossalai.booster.plugin import GeminiPlugin, HybridParallelPlugin, LowLevelZeroPlugin, TorchDDPPlugin
from colossalai.cluster import DistCoordinator
[FP8] rebase main (#5963) * add SimPO * fix dataloader * remove debug code * add orpo * fix style * fix colossalai, transformers version * fix colossalai, transformers version * fix colossalai, transformers version * fix torch colossalai version * update transformers version * [shardformer] DeepseekMoE support (#5871) * [Feature] deepseek moe expert parallel implement * [misc] fix typo, remove redundant file (#5867) * [misc] fix typo * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] deepseek support & unit test * [misc] remove debug code & useless print * [misc] fix typos (#5872) * [Feature] remove modeling file, use auto config. (#5884) * [misc] fix typos * [Feature] deepseek support via auto model, remove modeling file * [misc] delete useless file * [misc] fix typos * [Deepseek] remove redundant code (#5888) * [misc] fix typos * [Feature] deepseek support via auto model, remove modeling file * [misc] delete useless file * [misc] fix typos * [misc] remove redundant code * [Feature/deepseek] resolve comment. (#5889) * [misc] fix typos * [Feature] deepseek support via auto model, remove modeling file * [misc] delete useless file * [misc] fix typos * [misc] remove redundant code * [misc] mv module replacement into if branch * [misc] add some warning message and modify some code in unit test * [misc] fix typos --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Hoxfix] Fix CUDA_DEVICE_MAX_CONNECTIONS for comm overlap Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [Feat] Diffusion Model(PixArtAlpha/StableDiffusion3) Support (#5838) * Diffusion Model Inference support * Stable Diffusion 3 Support * pixartalpha support * [HotFix] CI,import,requirements-test for #5838 (#5892) * [Hot Fix] CI,import,requirements-test --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] Enable PP + SP for llama (#5868) * fix cross-PP-stage position id length diff bug * fix typo * fix typo * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * use a one cross entropy func for all shardformer models --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [ShardFormer] Add Ulysses Sequence Parallelism support for Command-R, Qwen2 and ChatGLM (#5897) * add benchmark for sft, dpo, simpo, orpo. Add benchmarking result. Support lora with gradient checkpoint * fix style * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix eval * hotfix citation * [zero] support all-gather overlap (#5898) * [zero] support all-gather overlap * [zero] add overlap all-gather flag * [misc] fix typo * [zero] update api * fix orpo cross entropy loss * [Auto Parallel]: Speed up intra-op plan generation by 44% (#5446) * Remove unnecessary calls to deepcopy * Build DimSpec's difference dict only once This change considerably speeds up construction speed of DimSpec objects. The difference_dict is the same for each DimSpec object, so a single copy of it is enough. * Fix documentation of DimSpec's difference method * [ShardFormer] fix qwen2 sp (#5903) * [compatibility] support torch 2.2 (#5875) * Support Pytorch 2.2.2 * keep build_on_pr file and update .compatibility * fix object_to_tensor usage when torch>=2.3.0 (#5820) * [misc] support torch2.3 (#5893) * [misc] support torch2.3 * [devops] update compatibility ci * [devops] update compatibility ci * [devops] add debug * [devops] add debug * [devops] add debug * [devops] add debug * [devops] remove debug * [devops] remove debug * [release] update version (#5912) * [plugin] support all-gather overlap for hybrid parallel (#5919) * [plugin] fixed all-gather overlap support for hybrid parallel * add kto * fix style, add kto data sample * [Examples] Add lazy init to OPT and GPT examples (#5924) Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [ColossalChat] Hotfix for ColossalChat (#5910) * add ignore and tiny llama * fix path issue * run style * fix issue * update bash * add ignore and tiny llama * fix path issue * run style * fix issue * update bash * fix ddp issue * add Qwen 1.5 32B * refactor tokenization * [FIX BUG] UnboundLocalError: cannot access local variable 'default_conversation' where it is not associated with a value (#5931) * cannot access local variable 'default_conversation' where it is not associated with a value set default value for 'default_conversation' * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * fix test data * refactor evaluation * remove real data path * remove real data path * Add n_fused as an input from native_module (#5894) * [FIX BUG] convert env param to int in (#5934) * [Hotfix] Fix ZeRO typo #5936 Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [Feature] Add a switch to control whether the model checkpoint needs to be saved after each epoch ends (#5941) * Add a switch to control whether the model checkpoint needs to be saved after each epoch ends * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * fix style * fix style * fix style * [shardformer] hotfix attn mask (#5945) * [shardformer] hotfix attn mask (#5947) * [Feat] Distrifusion Acceleration Support for Diffusion Inference (#5895) * Distrifusion Support source * comp comm overlap optimization * sd3 benchmark * pixart distrifusion bug fix * sd3 bug fix and benchmark * generation bug fix * naming fix * add docstring, fix counter and shape error * add reference * readme and requirement * [zero] hotfix update master params (#5951) * [release] update version (#5952) * [Chat] Fix lora (#5946) * fix merging * remove filepath * fix style * Update README.md (#5958) * [hotfix] Remove unused plan section (#5957) * remove readme * fix readme * update * [test] add mixtral for sequence classification * [test] add mixtral transformer test * [moe] fix plugin * [test] mixtra pp shard test * [chore] handle non member group * [zero] solve hang * [test] pass mixtral shardformer test * [moe] implement transit between non moe tp and ep * [zero] solve hang * [misc] solve booster hang by rename the variable * solve hang when parallel mode = pp + dp * [moe] implement submesh initialization * [moe] add mixtral dp grad scaling when not all experts are activated * [chore] manually revert unintended commit * [chore] trivial fix * [chore] arg pass & remove drop token * [test] add mixtral modelling test * [moe] implement tp * [moe] test deepseek * [moe] clean legacy code * [Feature] MoE Ulysses Support (#5918) * moe sp support * moe sp bug solve * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [chore] minor fix * [moe] init moe plugin comm setting with sp * moe sp + ep bug fix * [moe] finalize test (no pp) * [moe] full test for deepseek and mixtral (pp + sp to fix) * [chore] minor fix after rebase * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [chore] solve moe ckpt test failure and some other arg pass failure * [moe] remove ops * [test] fix test: test_zero1_2 * [bug] fix: somehow logger hangs the program * [moe] deepseek moe sp support * [test] add check * [deepseek] replace attn (a workaround for bug in transformers) * [misc] skip redunant test * [misc] remove debug/print code * [moe] refactor mesh assignment * Revert "[moe] implement submesh initialization" This reverts commit 2f9bce6686d1415a83d5726dc5ff02222c742582. * [chore] change moe_pg_mesh to private * [misc] remove incompatible test config * [misc] fix ci failure: change default value to false in moe plugin * [misc] remove useless condition * [chore] docstring * [moe] remove force_overlap_comm flag and add warning instead * [doc] add MoeHybridParallelPlugin docstring * [moe] solve dp axis issue * [chore] remove redundant test case, print string & reduce test tokens * [feat] Dist Loader for Eval (#5950) * support auto distributed data loader * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * support auto distributed data loader * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix tp error * remove unused parameters * remove unused * update inference * update docs * update inference --------- Co-authored-by: Michelle <qianranma8@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [lora] lora support hybrid parallel plugin (#5956) * lora support hybrid plugin * fix * fix * fix * fix * fp8 operators for compressed communication cast_to_fp8, cast_from_fp8, all_reduce_fp8 * fix scaling algorithm in FP8 casting * support fp8 communication in pipeline parallelism * add fp8_communication flag in the script * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix typo * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * shardformer fp8 * fix rebase * remove all to all * fix shardformer fp8 communication training degradation * [fp8] support all-gather flat tensor (#5932) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * Update low_level_optim.py --------- Co-authored-by: YeAnbang <anbangy2@outlook.com> Co-authored-by: Haze188 <haze188@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com> Co-authored-by: Guangyao Zhang <xjtu521@qq.com> Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com> Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: zhurunhua <1281592874@qq.com> Co-authored-by: Insu Jang <insujang@umich.edu> Co-authored-by: Gao, Ruiyuan <905370712@qq.com> Co-authored-by: hxwang <wang1570@e.ntu.edu.sg> Co-authored-by: Michelle <qianranma8@gmail.com> Co-authored-by: Wang Binluo <32676639+wangbluo@users.noreply.github.com> Co-authored-by: HangXu <hangxu0304@gmail.com>
2024-08-06 08:29:37 +00:00
from colossalai.lazy import LazyInitContext
from colossalai.nn.optimizer import HybridAdam
# ==============================
# Prepare Hyperparameters
# ==============================
NUM_EPOCHS = 3
BATCH_SIZE = 32
LEARNING_RATE = 2.4e-5
WEIGHT_DECAY = 0.01
WARMUP_FRACTION = 0.1
output_transform_fn = lambda x: x
criterion = lambda x: x.loss
def move_to_cuda(batch):
return {k: v.cuda() for k, v in batch.items()}
@torch.no_grad()
def evaluate_model(
model: nn.Module,
criterion,
test_dataloader: Union[DataLoader, List[DataLoader]],
num_labels: int,
task_name: str,
eval_splits: List[str],
booster: Booster,
coordinator: DistCoordinator,
):
metric = evaluate.load("glue", task_name, process_id=coordinator.rank, num_process=coordinator.world_size)
model.eval()
def evaluate_subset(dataloader: DataLoader):
use_pipeline = isinstance(booster.plugin, HybridParallelPlugin) and booster.plugin.pp_size > 1
is_pp_last_stage = use_pipeline and booster.plugin.stage_manager.is_last_stage()
accum_loss = torch.zeros(1, device=get_accelerator().get_current_device())
for batch in dataloader:
batch = move_to_cuda(batch)
labels = batch["labels"]
if use_pipeline:
pg_mesh = booster.plugin.pg_mesh
pp_group = booster.plugin.pp_group
current_pp_group_ranks = pg_mesh.get_ranks_in_group(pp_group)
current_rank = dist.get_rank()
batch = iter([batch])
outputs = booster.execute_pipeline(batch, model, criterion, return_loss=True, return_outputs=True)
if is_pp_last_stage:
logits = outputs["outputs"]["logits"]
val_loss = outputs["loss"]
accum_loss.add_(val_loss)
if num_labels > 1:
preds = torch.argmax(logits, axis=1)
elif num_labels == 1:
preds = logits.squeeze()
dist.broadcast_object_list([preds, val_loss], src=current_pp_group_ranks[-1], group=pp_group)
metric.add_batch(predictions=preds, references=labels)
elif current_rank in current_pp_group_ranks:
object_list = [None, None]
dist.broadcast_object_list(object_list, src=current_pp_group_ranks[-1], group=pp_group)
metric.add_batch(
predictions=object_list[0].to(get_accelerator().get_current_device()), references=labels
)
accum_loss.add_(object_list[1].to(get_accelerator().get_current_device()))
else:
batch = move_to_cuda(batch)
outputs = model(**batch)
val_loss, logits = outputs[:2]
accum_loss.add_(val_loss)
if num_labels > 1:
preds = torch.argmax(logits, axis=1)
elif num_labels == 1:
preds = logits.squeeze()
metric.add_batch(predictions=preds, references=labels)
results = metric.compute()
dist.all_reduce(accum_loss.div_(len(dataloader)))
if coordinator.is_master() and results is not None:
results["loss"] = accum_loss.item() / coordinator.world_size
return results
if isinstance(test_dataloader, DataLoader):
return evaluate_subset(test_dataloader)
else:
assert len(test_dataloader) == len(eval_splits)
final_results = {}
for split, sub_loader in zip(eval_splits, test_dataloader):
results = evaluate_subset(sub_loader)
final_results.update({f"{k}_{split}": v for k, v in results.items()})
return final_results
def train_epoch(
epoch: int,
model: nn.Module,
optimizer: Optimizer,
_criterion: Callable,
lr_scheduler: LRScheduler,
train_dataloader: DataLoader,
booster: Booster,
coordinator: DistCoordinator,
):
use_pipeline = isinstance(booster.plugin, HybridParallelPlugin) and booster.plugin.pp_size > 1
is_pp_last_stage = use_pipeline and booster.plugin.stage_manager.is_last_stage()
total_step = len(train_dataloader)
model.train()
optimizer.zero_grad()
train_dataloader_iter = iter(train_dataloader)
with tqdm(
range(total_step),
desc=f"Epoch [{epoch + 1}/{NUM_EPOCHS}]",
disable=not (coordinator.is_master() or is_pp_last_stage),
) as pbar:
# Forward pass
for _ in pbar:
if use_pipeline:
outputs = booster.execute_pipeline(
train_dataloader_iter, model, _criterion, optimizer, return_loss=True
)
# Backward and optimize
if is_pp_last_stage:
loss = outputs["loss"]
pbar.set_postfix({"loss": loss.item()})
else:
data = next(train_dataloader_iter)
data = move_to_cuda(data)
outputs = model(**data)
loss = _criterion(outputs, None)
# Backward
booster.backward(loss, optimizer)
pbar.set_postfix({"loss": loss.item()})
optimizer.step()
optimizer.zero_grad()
lr_scheduler.step()
def main():
# ==============================
# Parse Arguments
# ==============================
parser = argparse.ArgumentParser()
parser.add_argument("-t", "--task", default="mrpc", help="GLUE task to run")
parser.add_argument(
"-p",
"--plugin",
type=str,
default="torch_ddp",
choices=["torch_ddp", "torch_ddp_fp16", "gemini", "low_level_zero", "hybrid_parallel"],
help="plugin to use",
)
parser.add_argument(
"--model_type",
type=str,
default="gpt2",
help="only gpt2 now",
)
parser.add_argument("--target_f1", type=float, default=None, help="target f1 score. Raise exception if not reached")
parser.add_argument("--use_lazy_init", type=bool, default=False, help="for initiating lazy init context")
parser.add_argument("--use_fp8_comm", type=bool, default=False, help="for using fp8 during communication")
args = parser.parse_args()
if args.model_type == "gpt2":
model_name = "gpt2"
else:
raise RuntimeError
# ==============================
# Launch Distributed Environment
# ==============================
colossalai.launch_from_torch(seed=42)
coordinator = DistCoordinator()
# local_batch_size = BATCH_SIZE // coordinator.world_size
lr = LEARNING_RATE * coordinator.world_size
# ==============================
# Instantiate Plugin and Booster
# ==============================
booster_kwargs = {}
if args.plugin == "torch_ddp_fp16":
booster_kwargs["mixed_precision"] = "fp16"
if args.plugin.startswith("torch_ddp"):
plugin = TorchDDPPlugin(fp8_communication=args.use_fp8_comm)
elif args.plugin == "gemini":
plugin = GeminiPlugin(initial_scale=2**5)
elif args.plugin == "low_level_zero":
plugin = LowLevelZeroPlugin(initial_scale=2**5)
elif args.plugin == "hybrid_parallel":
# modify the param accordingly for finetuning test cases
plugin = HybridParallelPlugin(
tp_size=1,
pp_size=2,
num_microbatches=None,
microbatch_size=1,
enable_all_optimization=True,
zero_stage=1,
precision="fp16",
initial_scale=1,
fp8_communication=args.use_fp8_comm,
)
booster = Booster(plugin=plugin, **booster_kwargs)
# ==============================
# Prepare Dataloader
# ==============================
data_builder = GLUEDataBuilder(
model_name, plugin, args.task, train_batch_size=BATCH_SIZE, eval_batch_size=BATCH_SIZE
)
train_dataloader = data_builder.train_dataloader()
test_dataloader = data_builder.test_dataloader()
# ====================================
# Prepare model, optimizer
# ====================================
# gpt2 pretrained model
cfg = AutoConfig.from_pretrained(
model_name,
num_labels=data_builder.num_labels,
pad_token=data_builder.tokenizer.pad_token,
pad_token_id=data_builder.tokenizer.pad_token_id,
)
[FP8] rebase main (#5963) * add SimPO * fix dataloader * remove debug code * add orpo * fix style * fix colossalai, transformers version * fix colossalai, transformers version * fix colossalai, transformers version * fix torch colossalai version * update transformers version * [shardformer] DeepseekMoE support (#5871) * [Feature] deepseek moe expert parallel implement * [misc] fix typo, remove redundant file (#5867) * [misc] fix typo * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] deepseek support & unit test * [misc] remove debug code & useless print * [misc] fix typos (#5872) * [Feature] remove modeling file, use auto config. (#5884) * [misc] fix typos * [Feature] deepseek support via auto model, remove modeling file * [misc] delete useless file * [misc] fix typos * [Deepseek] remove redundant code (#5888) * [misc] fix typos * [Feature] deepseek support via auto model, remove modeling file * [misc] delete useless file * [misc] fix typos * [misc] remove redundant code * [Feature/deepseek] resolve comment. (#5889) * [misc] fix typos * [Feature] deepseek support via auto model, remove modeling file * [misc] delete useless file * [misc] fix typos * [misc] remove redundant code * [misc] mv module replacement into if branch * [misc] add some warning message and modify some code in unit test * [misc] fix typos --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Hoxfix] Fix CUDA_DEVICE_MAX_CONNECTIONS for comm overlap Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [Feat] Diffusion Model(PixArtAlpha/StableDiffusion3) Support (#5838) * Diffusion Model Inference support * Stable Diffusion 3 Support * pixartalpha support * [HotFix] CI,import,requirements-test for #5838 (#5892) * [Hot Fix] CI,import,requirements-test --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] Enable PP + SP for llama (#5868) * fix cross-PP-stage position id length diff bug * fix typo * fix typo * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * use a one cross entropy func for all shardformer models --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [ShardFormer] Add Ulysses Sequence Parallelism support for Command-R, Qwen2 and ChatGLM (#5897) * add benchmark for sft, dpo, simpo, orpo. Add benchmarking result. Support lora with gradient checkpoint * fix style * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix eval * hotfix citation * [zero] support all-gather overlap (#5898) * [zero] support all-gather overlap * [zero] add overlap all-gather flag * [misc] fix typo * [zero] update api * fix orpo cross entropy loss * [Auto Parallel]: Speed up intra-op plan generation by 44% (#5446) * Remove unnecessary calls to deepcopy * Build DimSpec's difference dict only once This change considerably speeds up construction speed of DimSpec objects. The difference_dict is the same for each DimSpec object, so a single copy of it is enough. * Fix documentation of DimSpec's difference method * [ShardFormer] fix qwen2 sp (#5903) * [compatibility] support torch 2.2 (#5875) * Support Pytorch 2.2.2 * keep build_on_pr file and update .compatibility * fix object_to_tensor usage when torch>=2.3.0 (#5820) * [misc] support torch2.3 (#5893) * [misc] support torch2.3 * [devops] update compatibility ci * [devops] update compatibility ci * [devops] add debug * [devops] add debug * [devops] add debug * [devops] add debug * [devops] remove debug * [devops] remove debug * [release] update version (#5912) * [plugin] support all-gather overlap for hybrid parallel (#5919) * [plugin] fixed all-gather overlap support for hybrid parallel * add kto * fix style, add kto data sample * [Examples] Add lazy init to OPT and GPT examples (#5924) Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [ColossalChat] Hotfix for ColossalChat (#5910) * add ignore and tiny llama * fix path issue * run style * fix issue * update bash * add ignore and tiny llama * fix path issue * run style * fix issue * update bash * fix ddp issue * add Qwen 1.5 32B * refactor tokenization * [FIX BUG] UnboundLocalError: cannot access local variable 'default_conversation' where it is not associated with a value (#5931) * cannot access local variable 'default_conversation' where it is not associated with a value set default value for 'default_conversation' * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * fix test data * refactor evaluation * remove real data path * remove real data path * Add n_fused as an input from native_module (#5894) * [FIX BUG] convert env param to int in (#5934) * [Hotfix] Fix ZeRO typo #5936 Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [Feature] Add a switch to control whether the model checkpoint needs to be saved after each epoch ends (#5941) * Add a switch to control whether the model checkpoint needs to be saved after each epoch ends * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * fix style * fix style * fix style * [shardformer] hotfix attn mask (#5945) * [shardformer] hotfix attn mask (#5947) * [Feat] Distrifusion Acceleration Support for Diffusion Inference (#5895) * Distrifusion Support source * comp comm overlap optimization * sd3 benchmark * pixart distrifusion bug fix * sd3 bug fix and benchmark * generation bug fix * naming fix * add docstring, fix counter and shape error * add reference * readme and requirement * [zero] hotfix update master params (#5951) * [release] update version (#5952) * [Chat] Fix lora (#5946) * fix merging * remove filepath * fix style * Update README.md (#5958) * [hotfix] Remove unused plan section (#5957) * remove readme * fix readme * update * [test] add mixtral for sequence classification * [test] add mixtral transformer test * [moe] fix plugin * [test] mixtra pp shard test * [chore] handle non member group * [zero] solve hang * [test] pass mixtral shardformer test * [moe] implement transit between non moe tp and ep * [zero] solve hang * [misc] solve booster hang by rename the variable * solve hang when parallel mode = pp + dp * [moe] implement submesh initialization * [moe] add mixtral dp grad scaling when not all experts are activated * [chore] manually revert unintended commit * [chore] trivial fix * [chore] arg pass & remove drop token * [test] add mixtral modelling test * [moe] implement tp * [moe] test deepseek * [moe] clean legacy code * [Feature] MoE Ulysses Support (#5918) * moe sp support * moe sp bug solve * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [chore] minor fix * [moe] init moe plugin comm setting with sp * moe sp + ep bug fix * [moe] finalize test (no pp) * [moe] full test for deepseek and mixtral (pp + sp to fix) * [chore] minor fix after rebase * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [chore] solve moe ckpt test failure and some other arg pass failure * [moe] remove ops * [test] fix test: test_zero1_2 * [bug] fix: somehow logger hangs the program * [moe] deepseek moe sp support * [test] add check * [deepseek] replace attn (a workaround for bug in transformers) * [misc] skip redunant test * [misc] remove debug/print code * [moe] refactor mesh assignment * Revert "[moe] implement submesh initialization" This reverts commit 2f9bce6686d1415a83d5726dc5ff02222c742582. * [chore] change moe_pg_mesh to private * [misc] remove incompatible test config * [misc] fix ci failure: change default value to false in moe plugin * [misc] remove useless condition * [chore] docstring * [moe] remove force_overlap_comm flag and add warning instead * [doc] add MoeHybridParallelPlugin docstring * [moe] solve dp axis issue * [chore] remove redundant test case, print string & reduce test tokens * [feat] Dist Loader for Eval (#5950) * support auto distributed data loader * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * support auto distributed data loader * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix tp error * remove unused parameters * remove unused * update inference * update docs * update inference --------- Co-authored-by: Michelle <qianranma8@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [lora] lora support hybrid parallel plugin (#5956) * lora support hybrid plugin * fix * fix * fix * fix * fp8 operators for compressed communication cast_to_fp8, cast_from_fp8, all_reduce_fp8 * fix scaling algorithm in FP8 casting * support fp8 communication in pipeline parallelism * add fp8_communication flag in the script * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix typo * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * shardformer fp8 * fix rebase * remove all to all * fix shardformer fp8 communication training degradation * [fp8] support all-gather flat tensor (#5932) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * Update low_level_optim.py --------- Co-authored-by: YeAnbang <anbangy2@outlook.com> Co-authored-by: Haze188 <haze188@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com> Co-authored-by: Guangyao Zhang <xjtu521@qq.com> Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com> Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: zhurunhua <1281592874@qq.com> Co-authored-by: Insu Jang <insujang@umich.edu> Co-authored-by: Gao, Ruiyuan <905370712@qq.com> Co-authored-by: hxwang <wang1570@e.ntu.edu.sg> Co-authored-by: Michelle <qianranma8@gmail.com> Co-authored-by: Wang Binluo <32676639+wangbluo@users.noreply.github.com> Co-authored-by: HangXu <hangxu0304@gmail.com>
2024-08-06 08:29:37 +00:00
init_ctx = (
LazyInitContext(default_device=get_accelerator().get_current_device())
if isinstance(plugin, (GeminiPlugin))
else nullcontext()
)
with init_ctx:
if model_name == "gpt2":
model = GPT2ForSequenceClassification.from_pretrained(model_name, config=cfg).cuda()
else:
raise RuntimeError
# optimizer
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": WEIGHT_DECAY,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = HybridAdam(optimizer_grouped_parameters, lr=lr, eps=1e-8)
# lr scheduler
total_steps = len(train_dataloader) * NUM_EPOCHS
num_warmup_steps = int(WARMUP_FRACTION * total_steps)
lr_scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=total_steps,
)
def _criterion(outputs, inputs):
outputs = output_transform_fn(outputs)
loss = criterion(outputs)
return loss
# ==============================
# Boost with ColossalAI
# ==============================
model, optimizer, _criterion, _, lr_scheduler = booster.boost(
model, optimizer, criterion=_criterion, lr_scheduler=lr_scheduler
)
# ==============================
# Train model
# ==============================
for epoch in range(NUM_EPOCHS):
train_epoch(epoch, model, optimizer, _criterion, lr_scheduler, train_dataloader, booster, coordinator)
results = evaluate_model(
model,
_criterion,
test_dataloader,
data_builder.num_labels,
args.task,
data_builder.eval_splits,
booster,
coordinator,
)
if coordinator.is_master():
print(results)
if args.target_f1 is not None and "f1" in results:
assert results["f1"] >= args.target_f1, f'f1 score {results["f1"]} is lower than target {args.target_f1}'
if __name__ == "__main__":
main()