|
|
|
import argparse
|
|
|
|
from typing import Callable, List, Union
|
|
|
|
|
|
|
|
import evaluate
|
|
|
|
import torch
|
|
|
|
import torch.distributed as dist
|
|
|
|
import torch.nn as nn
|
|
|
|
from data import GLUEDataBuilder
|
|
|
|
from torch.optim import Optimizer
|
|
|
|
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
|
|
|
|
from torch.utils.data import DataLoader
|
|
|
|
from tqdm import tqdm
|
|
|
|
from transformers import AutoConfig, GPT2ForSequenceClassification, get_linear_schedule_with_warmup
|
|
|
|
|
|
|
|
import colossalai
|
|
|
|
from colossalai.accelerator import get_accelerator
|
|
|
|
from colossalai.booster import Booster
|
|
|
|
from colossalai.booster.plugin import GeminiPlugin, HybridParallelPlugin, LowLevelZeroPlugin, TorchDDPPlugin
|
|
|
|
from colossalai.cluster import DistCoordinator
|
|
|
|
from colossalai.nn.optimizer import HybridAdam
|
|
|
|
|
|
|
|
# ==============================
|
|
|
|
# Prepare Hyperparameters
|
|
|
|
# ==============================
|
|
|
|
NUM_EPOCHS = 3
|
|
|
|
BATCH_SIZE = 32
|
|
|
|
LEARNING_RATE = 2.4e-5
|
|
|
|
WEIGHT_DECAY = 0.01
|
|
|
|
WARMUP_FRACTION = 0.1
|
|
|
|
|
|
|
|
output_transform_fn = lambda x: x
|
|
|
|
criterion = lambda x: x.loss
|
|
|
|
|
|
|
|
|
|
|
|
def move_to_cuda(batch):
|
|
|
|
return {k: v.cuda() for k, v in batch.items()}
|
|
|
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def evaluate_model(
|
|
|
|
model: nn.Module,
|
|
|
|
criterion,
|
|
|
|
test_dataloader: Union[DataLoader, List[DataLoader]],
|
|
|
|
num_labels: int,
|
|
|
|
task_name: str,
|
|
|
|
eval_splits: List[str],
|
|
|
|
booster: Booster,
|
|
|
|
coordinator: DistCoordinator,
|
|
|
|
):
|
|
|
|
metric = evaluate.load("glue", task_name, process_id=coordinator.rank, num_process=coordinator.world_size)
|
|
|
|
model.eval()
|
|
|
|
|
|
|
|
def evaluate_subset(dataloader: DataLoader):
|
|
|
|
use_pipeline = isinstance(booster.plugin, HybridParallelPlugin) and booster.plugin.pp_size > 1
|
|
|
|
is_pp_last_stage = use_pipeline and booster.plugin.stage_manager.is_last_stage()
|
|
|
|
|
|
|
|
accum_loss = torch.zeros(1, device=get_accelerator().get_current_device())
|
|
|
|
for batch in dataloader:
|
|
|
|
batch = move_to_cuda(batch)
|
|
|
|
labels = batch["labels"]
|
|
|
|
if use_pipeline:
|
|
|
|
pg_mesh = booster.plugin.pg_mesh
|
|
|
|
pp_group = booster.plugin.pp_group
|
|
|
|
current_pp_group_ranks = pg_mesh.get_ranks_in_group(pp_group)
|
|
|
|
current_rank = dist.get_rank()
|
|
|
|
batch = iter([batch])
|
|
|
|
outputs = booster.execute_pipeline(batch, model, criterion, return_loss=True, return_outputs=True)
|
|
|
|
|
|
|
|
if is_pp_last_stage:
|
|
|
|
logits = outputs["outputs"]["logits"]
|
|
|
|
val_loss = outputs["loss"]
|
|
|
|
accum_loss.add_(val_loss)
|
|
|
|
|
|
|
|
if num_labels > 1:
|
|
|
|
preds = torch.argmax(logits, axis=1)
|
|
|
|
elif num_labels == 1:
|
|
|
|
preds = logits.squeeze()
|
|
|
|
|
|
|
|
dist.broadcast_object_list([preds, val_loss], src=current_pp_group_ranks[-1], group=pp_group)
|
|
|
|
|
|
|
|
metric.add_batch(predictions=preds, references=labels)
|
|
|
|
elif current_rank in current_pp_group_ranks:
|
|
|
|
object_list = [None, None]
|
|
|
|
dist.broadcast_object_list(object_list, src=current_pp_group_ranks[-1], group=pp_group)
|
|
|
|
|
|
|
|
metric.add_batch(
|
|
|
|
predictions=object_list[0].to(get_accelerator().get_current_device()), references=labels
|
|
|
|
)
|
|
|
|
accum_loss.add_(object_list[1].to(get_accelerator().get_current_device()))
|
|
|
|
|
|
|
|
else:
|
|
|
|
batch = move_to_cuda(batch)
|
|
|
|
outputs = model(**batch)
|
|
|
|
val_loss, logits = outputs[:2]
|
|
|
|
accum_loss.add_(val_loss)
|
|
|
|
|
|
|
|
if num_labels > 1:
|
|
|
|
preds = torch.argmax(logits, axis=1)
|
|
|
|
elif num_labels == 1:
|
|
|
|
preds = logits.squeeze()
|
|
|
|
|
|
|
|
metric.add_batch(predictions=preds, references=labels)
|
|
|
|
|
|
|
|
results = metric.compute()
|
|
|
|
dist.all_reduce(accum_loss.div_(len(dataloader)))
|
|
|
|
if coordinator.is_master() and results is not None:
|
|
|
|
results["loss"] = accum_loss.item() / coordinator.world_size
|
|
|
|
|
|
|
|
return results
|
|
|
|
|
|
|
|
if isinstance(test_dataloader, DataLoader):
|
|
|
|
return evaluate_subset(test_dataloader)
|
|
|
|
else:
|
|
|
|
assert len(test_dataloader) == len(eval_splits)
|
|
|
|
final_results = {}
|
|
|
|
for split, sub_loader in zip(eval_splits, test_dataloader):
|
|
|
|
results = evaluate_subset(sub_loader)
|
|
|
|
final_results.update({f"{k}_{split}": v for k, v in results.items()})
|
|
|
|
return final_results
|
|
|
|
|
|
|
|
|
|
|
|
def train_epoch(
|
|
|
|
epoch: int,
|
|
|
|
model: nn.Module,
|
|
|
|
optimizer: Optimizer,
|
|
|
|
_criterion: Callable,
|
|
|
|
lr_scheduler: LRScheduler,
|
|
|
|
train_dataloader: DataLoader,
|
|
|
|
booster: Booster,
|
|
|
|
coordinator: DistCoordinator,
|
|
|
|
):
|
|
|
|
use_pipeline = isinstance(booster.plugin, HybridParallelPlugin) and booster.plugin.pp_size > 1
|
|
|
|
is_pp_last_stage = use_pipeline and booster.plugin.stage_manager.is_last_stage()
|
|
|
|
total_step = len(train_dataloader)
|
|
|
|
|
|
|
|
model.train()
|
|
|
|
optimizer.zero_grad()
|
|
|
|
train_dataloader_iter = iter(train_dataloader)
|
|
|
|
with tqdm(
|
|
|
|
range(total_step),
|
|
|
|
desc=f"Epoch [{epoch + 1}/{NUM_EPOCHS}]",
|
|
|
|
disable=not (coordinator.is_master() or is_pp_last_stage),
|
|
|
|
) as pbar:
|
|
|
|
# Forward pass
|
|
|
|
for _ in pbar:
|
|
|
|
if use_pipeline:
|
|
|
|
outputs = booster.execute_pipeline(
|
|
|
|
train_dataloader_iter, model, _criterion, optimizer, return_loss=True
|
|
|
|
)
|
|
|
|
# Backward and optimize
|
|
|
|
if is_pp_last_stage:
|
|
|
|
loss = outputs["loss"]
|
|
|
|
pbar.set_postfix({"loss": loss.item()})
|
|
|
|
else:
|
|
|
|
data = next(train_dataloader_iter)
|
|
|
|
data = move_to_cuda(data)
|
|
|
|
outputs = model(**data)
|
|
|
|
loss = _criterion(outputs, None)
|
|
|
|
# Backward
|
|
|
|
booster.backward(loss, optimizer)
|
|
|
|
pbar.set_postfix({"loss": loss.item()})
|
|
|
|
|
|
|
|
optimizer.step()
|
|
|
|
optimizer.zero_grad()
|
|
|
|
lr_scheduler.step()
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
# ==============================
|
|
|
|
# Parse Arguments
|
|
|
|
# ==============================
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument("-t", "--task", default="mrpc", help="GLUE task to run")
|
|
|
|
parser.add_argument(
|
|
|
|
"-p",
|
|
|
|
"--plugin",
|
|
|
|
type=str,
|
|
|
|
default="torch_ddp",
|
|
|
|
choices=["torch_ddp", "torch_ddp_fp16", "gemini", "low_level_zero", "hybrid_parallel"],
|
|
|
|
help="plugin to use",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--model_type",
|
|
|
|
type=str,
|
|
|
|
default="gpt2",
|
|
|
|
help="only gpt2 now",
|
|
|
|
)
|
|
|
|
parser.add_argument("--target_f1", type=float, default=None, help="target f1 score. Raise exception if not reached")
|
|
|
|
parser.add_argument("--use_lazy_init", type=bool, default=False, help="for initiating lazy init context")
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
if args.model_type == "gpt2":
|
|
|
|
model_name = "gpt2"
|
|
|
|
else:
|
|
|
|
raise RuntimeError
|
|
|
|
# ==============================
|
|
|
|
# Launch Distributed Environment
|
|
|
|
# ==============================
|
|
|
|
colossalai.launch_from_torch(seed=42)
|
|
|
|
coordinator = DistCoordinator()
|
|
|
|
|
|
|
|
# local_batch_size = BATCH_SIZE // coordinator.world_size
|
|
|
|
lr = LEARNING_RATE * coordinator.world_size
|
|
|
|
|
|
|
|
# ==============================
|
|
|
|
# Instantiate Plugin and Booster
|
|
|
|
# ==============================
|
|
|
|
booster_kwargs = {}
|
|
|
|
if args.plugin == "torch_ddp_fp16":
|
|
|
|
booster_kwargs["mixed_precision"] = "fp16"
|
|
|
|
if args.plugin.startswith("torch_ddp"):
|
|
|
|
plugin = TorchDDPPlugin()
|
|
|
|
elif args.plugin == "gemini":
|
|
|
|
plugin = GeminiPlugin(initial_scale=2**5)
|
|
|
|
elif args.plugin == "low_level_zero":
|
|
|
|
plugin = LowLevelZeroPlugin(initial_scale=2**5)
|
|
|
|
elif args.plugin == "hybrid_parallel":
|
|
|
|
# modify the param accordingly for finetuning test cases
|
|
|
|
plugin = HybridParallelPlugin(
|
|
|
|
tp_size=1,
|
|
|
|
pp_size=2,
|
|
|
|
num_microbatches=None,
|
|
|
|
microbatch_size=1,
|
|
|
|
enable_all_optimization=True,
|
|
|
|
zero_stage=1,
|
|
|
|
precision="fp16",
|
|
|
|
initial_scale=1,
|
|
|
|
)
|
|
|
|
|
|
|
|
booster = Booster(plugin=plugin, **booster_kwargs)
|
|
|
|
|
|
|
|
# ==============================
|
|
|
|
# Prepare Dataloader
|
|
|
|
# ==============================
|
|
|
|
data_builder = GLUEDataBuilder(
|
|
|
|
model_name, plugin, args.task, train_batch_size=BATCH_SIZE, eval_batch_size=BATCH_SIZE
|
|
|
|
)
|
|
|
|
train_dataloader = data_builder.train_dataloader()
|
|
|
|
test_dataloader = data_builder.test_dataloader()
|
|
|
|
|
|
|
|
# ====================================
|
|
|
|
# Prepare model, optimizer
|
|
|
|
# ====================================
|
|
|
|
# gpt2 pretrained model
|
|
|
|
|
|
|
|
cfg = AutoConfig.from_pretrained(model_name, num_labels=data_builder.num_labels)
|
|
|
|
|
|
|
|
if model_name == "gpt2":
|
|
|
|
model = GPT2ForSequenceClassification.from_pretrained(model_name, config=cfg).cuda()
|
|
|
|
else:
|
|
|
|
raise RuntimeError
|
|
|
|
|
|
|
|
# optimizer
|
|
|
|
no_decay = ["bias", "LayerNorm.weight"]
|
|
|
|
optimizer_grouped_parameters = [
|
|
|
|
{
|
|
|
|
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
|
|
|
"weight_decay": WEIGHT_DECAY,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
|
|
|
|
"weight_decay": 0.0,
|
|
|
|
},
|
|
|
|
]
|
|
|
|
|
|
|
|
optimizer = HybridAdam(optimizer_grouped_parameters, lr=lr, eps=1e-8)
|
|
|
|
|
|
|
|
# lr scheduler
|
|
|
|
total_steps = len(train_dataloader) * NUM_EPOCHS
|
|
|
|
num_warmup_steps = int(WARMUP_FRACTION * total_steps)
|
|
|
|
lr_scheduler = get_linear_schedule_with_warmup(
|
|
|
|
optimizer,
|
|
|
|
num_warmup_steps=num_warmup_steps,
|
|
|
|
num_training_steps=total_steps,
|
|
|
|
)
|
|
|
|
|
|
|
|
def _criterion(outputs, inputs):
|
|
|
|
outputs = output_transform_fn(outputs)
|
|
|
|
loss = criterion(outputs)
|
|
|
|
return loss
|
|
|
|
|
|
|
|
# ==============================
|
|
|
|
# Boost with ColossalAI
|
|
|
|
# ==============================
|
|
|
|
model, optimizer, _criterion, _, lr_scheduler = booster.boost(
|
|
|
|
model, optimizer, criterion=_criterion, lr_scheduler=lr_scheduler
|
|
|
|
)
|
|
|
|
|
|
|
|
# ==============================
|
|
|
|
# Train model
|
|
|
|
# ==============================
|
|
|
|
for epoch in range(NUM_EPOCHS):
|
|
|
|
train_epoch(epoch, model, optimizer, _criterion, lr_scheduler, train_dataloader, booster, coordinator)
|
|
|
|
|
|
|
|
results = evaluate_model(
|
|
|
|
model,
|
|
|
|
_criterion,
|
|
|
|
test_dataloader,
|
|
|
|
data_builder.num_labels,
|
|
|
|
args.task,
|
|
|
|
data_builder.eval_splits,
|
|
|
|
booster,
|
|
|
|
coordinator,
|
|
|
|
)
|
|
|
|
|
|
|
|
if coordinator.is_master():
|
|
|
|
print(results)
|
|
|
|
if args.target_f1 is not None and "f1" in results:
|
|
|
|
assert results["f1"] >= args.target_f1, f'f1 score {results["f1"]} is lower than target {args.target_f1}'
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|