|
|
|
from typing import Any, Callable, Dict, Iterable, List, Tuple
|
|
|
|
|
|
|
|
from torch.fx.node import Node
|
|
|
|
|
|
|
|
|
|
|
|
def unflat_list(inputs):
|
|
|
|
"""
|
|
|
|
unflat a list by recursion
|
|
|
|
"""
|
|
|
|
res = []
|
|
|
|
for i in inputs:
|
|
|
|
if isinstance(i, list) or isinstance(i, set) or isinstance(i, tuple):
|
|
|
|
res.extend(unflat_list(i))
|
|
|
|
else:
|
|
|
|
res.append(i)
|
|
|
|
return res
|
|
|
|
|
|
|
|
|
|
|
|
def find_first_tensor_arg(node):
|
|
|
|
"""
|
|
|
|
Find the first input tensor arg for a node
|
|
|
|
"""
|
|
|
|
for arg in node.args:
|
|
|
|
if type(arg) == type(node):
|
|
|
|
return arg
|
|
|
|
raise RuntimeError()
|
|
|
|
|
|
|
|
|
|
|
|
def is_non_compute_node(node):
|
|
|
|
if any(i in node.op for i in ["placeholder", "get_attr", "output"]) or any(
|
|
|
|
i in node.name for i in ["getitem", "getattr"]):
|
|
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
|
|
def get_node_shape(node):
|
|
|
|
if hasattr(node.meta["tensor_meta"], "shape"):
|
|
|
|
return node.meta["tensor_meta"].shape
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
|
|
|
def is_non_compute_node_except_placeholder(node):
|
|
|
|
if any(i in node.op for i in ["get_attr", "output"]) or any(i in node.name for i in ["getitem", "getattr"]):
|
|
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
|
|
def is_non_compute_node_except_placeholder_output(node):
|
|
|
|
if any(i in node.op for i in ["get_attr"]) or any(i in node.name for i in ["getitem", "getattr"]):
|
|
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
|
|
def find_idx_by_name(name, nodes_list):
|
|
|
|
for idx, node in enumerate(nodes_list):
|
|
|
|
if node.name == name:
|
|
|
|
return idx
|
|
|
|
raise RuntimeError("name %s not found in node list" % name)
|
|
|
|
|
|
|
|
|
|
|
|
def delete_free_var_from_last_use(user_to_last_uses):
|
|
|
|
for key, value in user_to_last_uses.items():
|
|
|
|
for n in value:
|
|
|
|
if n.op == "placeholder":
|
|
|
|
user_to_last_uses[key].remove(n)
|
|
|
|
|
|
|
|
|
|
|
|
def find_chunk_all_input_nodes(nodes: List[Node]):
|
|
|
|
"""
|
|
|
|
Find non-compute input and output node names.
|
|
|
|
input nodes are nodes used in the list
|
|
|
|
output nodes are nodes will use nodes in the list
|
|
|
|
"""
|
|
|
|
input_nodes = []
|
|
|
|
for node in nodes:
|
|
|
|
for input_node in node._input_nodes.keys():
|
|
|
|
if input_node not in nodes and input_node not in input_nodes:
|
|
|
|
input_nodes.append(input_node)
|
|
|
|
return input_nodes
|
|
|
|
|
|
|
|
|
|
|
|
def find_chunk_compute_input_and_output_nodes(nodes: List[Node]):
|
|
|
|
"""
|
|
|
|
Find non-compute input and output node names.
|
|
|
|
input nodes are nodes used in the list
|
|
|
|
output nodes are nodes will use nodes in the list
|
|
|
|
"""
|
|
|
|
input_nodes = []
|
|
|
|
output_nodes = []
|
|
|
|
|
|
|
|
# if a node has an input node which is not in the node list
|
|
|
|
# we treat that input node as the input of the checkpoint function
|
|
|
|
for node in nodes:
|
|
|
|
for input_node in node._input_nodes.keys():
|
|
|
|
if (input_node not in nodes and input_node not in input_nodes
|
|
|
|
and not is_non_compute_node_except_placeholder(input_node)):
|
|
|
|
input_nodes.append(input_node)
|
|
|
|
|
|
|
|
# if a node has a user node which is not in the node list
|
|
|
|
# we treat that user node as the node receiving the current node output
|
|
|
|
for node in nodes:
|
|
|
|
for output_node in node.users.keys():
|
|
|
|
if (output_node not in nodes and node not in output_nodes
|
|
|
|
and not is_non_compute_node_except_placeholder_output(output_node)):
|
|
|
|
output_nodes.append(node)
|
|
|
|
|
|
|
|
return input_nodes, output_nodes
|