mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
96 lines
2.9 KiB
96 lines
2.9 KiB
2 years ago
|
from typing import Any, Callable, Dict, Iterable, List, Tuple
|
||
|
|
||
|
from torch.fx.node import Node
|
||
|
|
||
|
|
||
|
def is_non_compute_node(node):
|
||
|
if any(i in node.op for i in ["placeholder", "get_attr", "output"]) or any(
|
||
|
i in node.name for i in ["getitem", "getattr"]
|
||
|
):
|
||
|
return True
|
||
|
return False
|
||
|
|
||
|
|
||
|
def get_node_shape(node):
|
||
|
if hasattr(node.meta["tensor_meta"], "shape"):
|
||
|
return node.meta["tensor_meta"].shape
|
||
|
return None
|
||
|
|
||
|
|
||
|
def is_non_compute_node_except_placeholder(node):
|
||
|
if any(i in node.op for i in ["get_attr", "output"]) or any(
|
||
|
i in node.name for i in ["getitem", "getattr"]
|
||
|
):
|
||
|
return True
|
||
|
return False
|
||
|
|
||
|
|
||
|
def is_non_compute_node_except_placeholder_output(node):
|
||
|
if any(i in node.op for i in ["get_attr"]) or any(
|
||
|
i in node.name for i in ["getitem", "getattr"]
|
||
|
):
|
||
|
return True
|
||
|
return False
|
||
|
|
||
|
|
||
|
def find_idx_by_name(name, nodes_list):
|
||
|
for idx, node in enumerate(nodes_list):
|
||
|
if node.name == name:
|
||
|
return idx
|
||
|
raise RuntimeError("name %s not found in node list" % name)
|
||
|
|
||
|
|
||
|
def delete_free_var_from_last_use(user_to_last_uses):
|
||
|
for key, value in user_to_last_uses.items():
|
||
|
for n in value:
|
||
|
if n.op == "placeholder":
|
||
|
user_to_last_uses[key].remove(n)
|
||
|
|
||
|
|
||
|
def find_chunk_all_input_nodes(nodes: List[Node]):
|
||
|
"""
|
||
|
Find non-compute input and output node names.
|
||
|
input nodes are nodes used in the list
|
||
|
output nodes are nodes will use nodes in the list
|
||
|
"""
|
||
|
input_nodes = []
|
||
|
for node in nodes:
|
||
|
for input_node in node._input_nodes.keys():
|
||
|
if input_node not in nodes and input_node not in input_nodes:
|
||
|
input_nodes.append(input_node)
|
||
|
return input_nodes
|
||
|
|
||
|
|
||
|
def find_chunk_compute_input_and_output_nodes(nodes: List[Node]):
|
||
|
"""
|
||
|
Find non-compute input and output node names.
|
||
|
input nodes are nodes used in the list
|
||
|
output nodes are nodes will use nodes in the list
|
||
|
"""
|
||
|
input_nodes = []
|
||
|
output_nodes = []
|
||
|
|
||
|
# if a node has an input node which is not in the node list
|
||
|
# we treat that input node as the input of the checkpoint function
|
||
|
for node in nodes:
|
||
|
for input_node in node._input_nodes.keys():
|
||
|
if (
|
||
|
input_node not in nodes
|
||
|
and input_node not in input_nodes
|
||
|
and not is_non_compute_node_except_placeholder(input_node)
|
||
|
):
|
||
|
input_nodes.append(input_node)
|
||
|
|
||
|
# if a node has a user node which is not in the node list
|
||
|
# we treat that user node as the node receiving the current node output
|
||
|
for node in nodes:
|
||
|
for output_node in node.users.keys():
|
||
|
if (
|
||
|
output_node not in nodes
|
||
|
and node not in output_nodes
|
||
|
and not is_non_compute_node_except_placeholder_output(output_node)
|
||
|
):
|
||
|
output_nodes.append(node)
|
||
|
|
||
|
return input_nodes, output_nodes
|