2023-11-02 02:21:24 +00:00
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
import torch.distributed as dist
|
|
|
|
|
|
|
|
import colossalai
|
|
|
|
from colossalai.booster import Booster
|
|
|
|
from colossalai.booster.plugin import LowLevelZeroPlugin
|
|
|
|
from colossalai.booster.plugin.low_level_zero_plugin import LowLevelZeroModel
|
|
|
|
from colossalai.moe.layers import apply_load_balance
|
|
|
|
from colossalai.moe.manager import MOE_MANAGER
|
|
|
|
from colossalai.tensor.moe_tensor.api import is_moe_tensor
|
|
|
|
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
|
|
|
from tests.test_moe.moe_utils import MoeGradientHandler, MoeModel
|
|
|
|
|
|
|
|
|
|
|
|
def split_ddp_grad(grad, world_size):
|
|
|
|
with torch.no_grad():
|
|
|
|
grad = grad.clone().detach().flatten()
|
|
|
|
padding_size = (world_size - grad.numel() % world_size) % world_size
|
|
|
|
if padding_size > 0:
|
|
|
|
grad = torch.nn.functional.pad(grad, [0, padding_size])
|
|
|
|
splited_grad = grad.split(grad.numel() // world_size)
|
|
|
|
return splited_grad
|
|
|
|
|
|
|
|
|
|
|
|
def run_fwd_bwd(model, data, label, criterion, optimizer, enable_autocast=False):
|
|
|
|
model.train()
|
|
|
|
with torch.cuda.amp.autocast(enabled=enable_autocast):
|
|
|
|
if criterion:
|
|
|
|
y = model(data)
|
|
|
|
loss = criterion(y, label)
|
|
|
|
else:
|
|
|
|
loss = model(data, label)
|
|
|
|
loss = loss.float()
|
|
|
|
|
|
|
|
if isinstance(model, LowLevelZeroModel):
|
|
|
|
optimizer.backward(loss)
|
|
|
|
else:
|
|
|
|
loss.backward()
|
|
|
|
return y
|
|
|
|
|
|
|
|
|
|
|
|
def run_zero_optim_test(local_rank, world_size, stage=1):
|
|
|
|
criterion = torch.nn.CrossEntropyLoss()
|
|
|
|
|
|
|
|
MOE_MANAGER.__init__()
|
|
|
|
MOE_MANAGER.setup(
|
|
|
|
parallel="EP",
|
|
|
|
)
|
|
|
|
zero_model = MoeModel(enable_load_balance=True)
|
|
|
|
zero_optimizer = torch.optim.Adam(zero_model.parameters())
|
|
|
|
plugin = LowLevelZeroPlugin(stage=stage, precision="bf16", verbose=True)
|
|
|
|
booster = Booster(plugin=plugin)
|
|
|
|
zero_model, zero_optimizer, _, _, _ = booster.boost(zero_model, zero_optimizer)
|
|
|
|
|
|
|
|
MOE_MANAGER.__init__()
|
2023-11-08 15:07:03 +00:00
|
|
|
MOE_MANAGER.setup(parallel="EP")
|
2023-11-02 02:21:24 +00:00
|
|
|
torch_model = MoeModel()
|
|
|
|
for zero_param, torch_param in zip(zero_model.parameters(), torch_model.parameters()):
|
|
|
|
torch_param.data.copy_(zero_param.data)
|
|
|
|
torch_optimizer = torch.optim.Adam(torch_model.parameters())
|
|
|
|
torch_model = torch_model.cuda().bfloat16()
|
|
|
|
grad_handler = MoeGradientHandler(torch_model)
|
|
|
|
|
|
|
|
# run to update expert load
|
|
|
|
data = torch.randn(16, 4).cuda().bfloat16() / 1000 / (local_rank + 1)
|
|
|
|
label = torch.randint(0, 4, (16,)).cuda()
|
|
|
|
|
|
|
|
# run torch model twice
|
|
|
|
run_fwd_bwd(torch_model, data, label, criterion, None)
|
|
|
|
grad_handler.handle_gradient()
|
|
|
|
torch_optimizer.step()
|
|
|
|
torch_optimizer.zero_grad()
|
|
|
|
run_fwd_bwd(torch_model, data, label, criterion, None)
|
|
|
|
grad_handler.handle_gradient()
|
|
|
|
|
|
|
|
# get optim and load status in zero model
|
|
|
|
run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer)
|
|
|
|
zero_optimizer.step()
|
|
|
|
zero_optimizer.zero_grad()
|
|
|
|
with torch.no_grad():
|
|
|
|
origin_out = zero_model(data)
|
|
|
|
|
|
|
|
# load balance
|
|
|
|
apply_load_balance(zero_model, zero_optimizer)
|
|
|
|
|
|
|
|
# run again to test
|
|
|
|
zero_out = run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer)
|
|
|
|
torch.allclose(origin_out, zero_out)
|
|
|
|
|
|
|
|
# assert optim
|
|
|
|
torch_optimizer.step()
|
|
|
|
torch_out = run_fwd_bwd(torch_model, data, label, criterion, None)
|
|
|
|
zero_optimizer.step()
|
|
|
|
zero_out = run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer)
|
2023-11-08 15:07:03 +00:00
|
|
|
assert torch.allclose(zero_out, torch_out, atol=3e-5), f"zero_out:{zero_out}\ntorch_out{torch_out}"
|
2023-11-02 02:21:24 +00:00
|
|
|
|
|
|
|
|
|
|
|
def run_hybrid_zero_optim_test(local_rank, world_size, stage=1):
|
|
|
|
criterion = torch.nn.CrossEntropyLoss()
|
|
|
|
data = torch.randn(16, 4).cuda()
|
|
|
|
label = torch.randint(0, 4, (16,)).cuda()
|
|
|
|
|
|
|
|
MOE_MANAGER.__init__()
|
2023-11-08 15:07:03 +00:00
|
|
|
MOE_MANAGER.setup(parallel=None)
|
2023-11-02 02:21:24 +00:00
|
|
|
torch_model = MoeModel()
|
|
|
|
torch_optimizer = torch.optim.Adam(torch_model.parameters())
|
|
|
|
torch_model = torch_model.cuda()
|
|
|
|
|
|
|
|
MOE_MANAGER.__init__()
|
|
|
|
MOE_MANAGER.setup(
|
|
|
|
max_ep_size=2,
|
|
|
|
use_ep_inside=False,
|
|
|
|
parallel="EP",
|
|
|
|
)
|
|
|
|
zero_model = MoeModel(enable_load_balance=True)
|
|
|
|
extra_dp_group = MOE_MANAGER.parallel_info_dict[2].dp_group
|
|
|
|
ep_rank = dist.get_rank(MOE_MANAGER.parallel_info_dict[2].ep_group)
|
|
|
|
ep_size = MOE_MANAGER.parallel_info_dict[2].ep_size
|
|
|
|
for zero_param, torch_param in zip(zero_model.parameters(), torch_model.parameters()):
|
|
|
|
if is_moe_tensor(zero_param):
|
|
|
|
num_expert = torch_param.data.shape[0]
|
|
|
|
zero_param.data.copy_(
|
|
|
|
torch_param.data[ep_rank * (num_expert // ep_size) : (ep_rank + 1) * (num_expert // ep_size)]
|
|
|
|
.detach()
|
|
|
|
.clone()
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
zero_param.data.copy_(torch_param.data.detach().clone())
|
|
|
|
zero_optimizer = torch.optim.Adam(zero_model.parameters())
|
|
|
|
plugin = LowLevelZeroPlugin(stage=stage, precision="fp32")
|
|
|
|
plugin.zero_optim_kwargs["moe_extra_dp_process_group"] = extra_dp_group
|
|
|
|
booster = Booster(plugin=plugin)
|
|
|
|
zero_model, zero_optimizer, _, _, _ = booster.boost(zero_model, zero_optimizer)
|
|
|
|
|
|
|
|
# run torch for twice
|
|
|
|
run_fwd_bwd(torch_model, data, label, criterion, None)
|
|
|
|
torch_optimizer.step()
|
|
|
|
torch_optimizer.zero_grad()
|
|
|
|
run_fwd_bwd(torch_model, data, label, criterion, None)
|
|
|
|
torch_optimizer.step()
|
|
|
|
|
|
|
|
# run zero
|
|
|
|
run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer)
|
|
|
|
zero_optimizer.step()
|
|
|
|
zero_optimizer.zero_grad()
|
|
|
|
with torch.no_grad():
|
|
|
|
origin_out = zero_model(data)
|
|
|
|
|
|
|
|
# load balance
|
|
|
|
apply_load_balance(zero_model, zero_optimizer)
|
|
|
|
|
|
|
|
# assert out
|
|
|
|
zero_out = run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer)
|
|
|
|
torch.allclose(origin_out, zero_out)
|
|
|
|
|
|
|
|
# assert optim
|
|
|
|
zero_optimizer.step()
|
|
|
|
zero_out = run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer)
|
|
|
|
torch_out = run_fwd_bwd(torch_model, data, label, criterion, None)
|
|
|
|
# TODO: high atol, check if bug exists
|
|
|
|
assert torch.allclose(zero_out, torch_out, atol=8e-4), f"zero_out:{zero_out}\ntorch_out{torch_out}"
|
|
|
|
|
|
|
|
|
|
|
|
def run_dist(rank, world_size, port):
|
|
|
|
colossalai.launch(
|
|
|
|
config=dict(),
|
|
|
|
rank=rank,
|
|
|
|
world_size=world_size,
|
|
|
|
host="localhost",
|
|
|
|
port=port,
|
|
|
|
backend="nccl",
|
|
|
|
)
|
|
|
|
run_zero_optim_test(rank, world_size, stage=1)
|
|
|
|
run_zero_optim_test(rank, world_size, stage=2)
|
|
|
|
run_hybrid_zero_optim_test(rank, world_size, stage=1)
|
|
|
|
run_hybrid_zero_optim_test(rank, world_size, stage=2)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.dist
|
|
|
|
@pytest.mark.parametrize("world_size", [4])
|
|
|
|
@rerun_if_address_is_in_use()
|
|
|
|
def test_moe_load_balance(world_size):
|
|
|
|
spawn(run_dist, world_size)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
test_moe_load_balance(world_size=4)
|