You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_moe/test_moe_load_balance.py

191 lines
6.6 KiB

import pytest
import torch
import torch.distributed as dist
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin import LowLevelZeroPlugin
from colossalai.booster.plugin.low_level_zero_plugin import LowLevelZeroModel
from colossalai.moe.layers import apply_load_balance
from colossalai.moe.manager import MOE_MANAGER
from colossalai.tensor.moe_tensor.api import is_moe_tensor
from colossalai.testing import rerun_if_address_is_in_use, spawn
from tests.test_moe.moe_utils import MoeGradientHandler, MoeModel
def split_ddp_grad(grad, world_size):
with torch.no_grad():
grad = grad.clone().detach().flatten()
padding_size = (world_size - grad.numel() % world_size) % world_size
if padding_size > 0:
grad = torch.nn.functional.pad(grad, [0, padding_size])
splited_grad = grad.split(grad.numel() // world_size)
return splited_grad
def run_fwd_bwd(model, data, label, criterion, optimizer, enable_autocast=False):
model.train()
with torch.cuda.amp.autocast(enabled=enable_autocast):
if criterion:
y = model(data)
loss = criterion(y, label)
else:
loss = model(data, label)
loss = loss.float()
if isinstance(model, LowLevelZeroModel):
optimizer.backward(loss)
else:
loss.backward()
return y
def run_zero_optim_test(local_rank, world_size, stage=1):
criterion = torch.nn.CrossEntropyLoss()
MOE_MANAGER.__init__()
MOE_MANAGER.setup(
seed=42,
parallel="EP",
)
zero_model = MoeModel(enable_load_balance=True)
zero_optimizer = torch.optim.Adam(zero_model.parameters())
plugin = LowLevelZeroPlugin(stage=stage, precision="bf16", verbose=True)
booster = Booster(plugin=plugin)
zero_model, zero_optimizer, _, _, _ = booster.boost(zero_model, zero_optimizer)
MOE_MANAGER.__init__()
MOE_MANAGER.setup(seed=42, parallel="EP")
torch_model = MoeModel()
for zero_param, torch_param in zip(zero_model.parameters(), torch_model.parameters()):
torch_param.data.copy_(zero_param.data)
torch_optimizer = torch.optim.Adam(torch_model.parameters())
torch_model = torch_model.cuda().bfloat16()
grad_handler = MoeGradientHandler(torch_model)
# run to update expert load
data = torch.randn(16, 4).cuda().bfloat16() / 1000 / (local_rank + 1)
label = torch.randint(0, 4, (16,)).cuda()
# run torch model twice
run_fwd_bwd(torch_model, data, label, criterion, None)
grad_handler.handle_gradient()
torch_optimizer.step()
torch_optimizer.zero_grad()
run_fwd_bwd(torch_model, data, label, criterion, None)
grad_handler.handle_gradient()
# get optim and load status in zero model
run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer)
zero_optimizer.step()
zero_optimizer.zero_grad()
with torch.no_grad():
origin_out = zero_model(data)
# load balance
apply_load_balance(zero_model, zero_optimizer)
# run again to test
zero_out = run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer)
torch.allclose(origin_out, zero_out)
# assert optim
torch_optimizer.step()
torch_out = run_fwd_bwd(torch_model, data, label, criterion, None)
zero_optimizer.step()
zero_out = run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer)
assert torch.allclose(zero_out, torch_out), f"zero_out:{zero_out}\ntorch_out{torch_out}"
def run_hybrid_zero_optim_test(local_rank, world_size, stage=1):
criterion = torch.nn.CrossEntropyLoss()
data = torch.randn(16, 4).cuda()
label = torch.randint(0, 4, (16,)).cuda()
MOE_MANAGER.__init__()
MOE_MANAGER.setup(seed=42, parallel=None)
torch_model = MoeModel()
torch_optimizer = torch.optim.Adam(torch_model.parameters())
torch_model = torch_model.cuda()
MOE_MANAGER.__init__()
MOE_MANAGER.setup(
seed=42,
max_ep_size=2,
use_ep_inside=False,
parallel="EP",
)
zero_model = MoeModel(enable_load_balance=True)
extra_dp_group = MOE_MANAGER.parallel_info_dict[2].dp_group
ep_rank = dist.get_rank(MOE_MANAGER.parallel_info_dict[2].ep_group)
ep_size = MOE_MANAGER.parallel_info_dict[2].ep_size
for zero_param, torch_param in zip(zero_model.parameters(), torch_model.parameters()):
if is_moe_tensor(zero_param):
num_expert = torch_param.data.shape[0]
zero_param.data.copy_(
torch_param.data[ep_rank * (num_expert // ep_size) : (ep_rank + 1) * (num_expert // ep_size)]
.detach()
.clone()
)
else:
zero_param.data.copy_(torch_param.data.detach().clone())
zero_optimizer = torch.optim.Adam(zero_model.parameters())
plugin = LowLevelZeroPlugin(stage=stage, precision="fp32")
plugin.zero_optim_kwargs["moe_extra_dp_process_group"] = extra_dp_group
booster = Booster(plugin=plugin)
zero_model, zero_optimizer, _, _, _ = booster.boost(zero_model, zero_optimizer)
# run torch for twice
run_fwd_bwd(torch_model, data, label, criterion, None)
torch_optimizer.step()
torch_optimizer.zero_grad()
run_fwd_bwd(torch_model, data, label, criterion, None)
torch_optimizer.step()
# run zero
run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer)
zero_optimizer.step()
zero_optimizer.zero_grad()
with torch.no_grad():
origin_out = zero_model(data)
# load balance
apply_load_balance(zero_model, zero_optimizer)
# assert out
zero_out = run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer)
torch.allclose(origin_out, zero_out)
# assert optim
zero_optimizer.step()
zero_out = run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer)
torch_out = run_fwd_bwd(torch_model, data, label, criterion, None)
# TODO: high atol, check if bug exists
assert torch.allclose(zero_out, torch_out, atol=8e-4), f"zero_out:{zero_out}\ntorch_out{torch_out}"
def run_dist(rank, world_size, port):
colossalai.launch(
config=dict(),
rank=rank,
world_size=world_size,
host="localhost",
port=port,
backend="nccl",
)
run_zero_optim_test(rank, world_size, stage=1)
run_zero_optim_test(rank, world_size, stage=2)
run_hybrid_zero_optim_test(rank, world_size, stage=1)
run_hybrid_zero_optim_test(rank, world_size, stage=2)
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [4])
@rerun_if_address_is_in_use()
def test_moe_load_balance(world_size):
spawn(run_dist, world_size)
if __name__ == "__main__":
test_moe_load_balance(world_size=4)