mirror of https://github.com/hpcaitech/ColossalAI
221 lines
7.6 KiB
Python
221 lines
7.6 KiB
Python
|
import argparse
|
||
|
from typing import List, Union
|
||
|
|
||
|
import evaluate
|
||
|
import torch
|
||
|
import torch.distributed as dist
|
||
|
import torch.nn as nn
|
||
|
from data import GLUEDataBuilder
|
||
|
from torch.optim import Optimizer
|
||
|
from torch.utils.data import DataLoader
|
||
|
from tqdm import tqdm
|
||
|
from transformers import (
|
||
|
AlbertForSequenceClassification,
|
||
|
AutoConfig,
|
||
|
BertForSequenceClassification,
|
||
|
get_linear_schedule_with_warmup,
|
||
|
)
|
||
|
|
||
|
import colossalai
|
||
|
from colossalai.booster import Booster
|
||
|
from colossalai.booster.plugin import GeminiPlugin, LowLevelZeroPlugin, TorchDDPPlugin
|
||
|
from colossalai.cluster import DistCoordinator
|
||
|
from colossalai.nn.optimizer import HybridAdam
|
||
|
from colossalai.utils import get_current_device
|
||
|
|
||
|
# ==============================
|
||
|
# Prepare Hyperparameters
|
||
|
# ==============================
|
||
|
NUM_EPOCHS = 3
|
||
|
BATCH_SIZE = 32
|
||
|
LEARNING_RATE = 2.4e-5
|
||
|
WEIGHT_DECAY = 0.01
|
||
|
WARMUP_FRACTION = 0.1
|
||
|
|
||
|
|
||
|
def move_to_cuda(batch):
|
||
|
return {k: v.cuda() for k, v in batch.items()}
|
||
|
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def evaluate_model(model: nn.Module, test_dataloader: Union[DataLoader, List[DataLoader]], num_labels: int, task_name: str,
|
||
|
eval_splits: List[str], coordinator: DistCoordinator):
|
||
|
metric = evaluate.load("glue", task_name, process_id=coordinator.rank, num_process=coordinator.world_size)
|
||
|
model.eval()
|
||
|
|
||
|
def evaluate_subset(dataloader: DataLoader):
|
||
|
accum_loss = torch.zeros(1, device=get_current_device())
|
||
|
for batch in dataloader:
|
||
|
batch = move_to_cuda(batch)
|
||
|
outputs = model(**batch)
|
||
|
val_loss, logits = outputs[:2]
|
||
|
accum_loss.add_(val_loss)
|
||
|
|
||
|
if num_labels > 1:
|
||
|
preds = torch.argmax(logits, axis=1)
|
||
|
elif num_labels == 1:
|
||
|
preds = logits.squeeze()
|
||
|
|
||
|
labels = batch["labels"]
|
||
|
|
||
|
metric.add_batch(predictions=preds, references=labels)
|
||
|
|
||
|
results = metric.compute()
|
||
|
dist.all_reduce(accum_loss.div_(len(dataloader)))
|
||
|
if coordinator.is_master():
|
||
|
results['loss'] = accum_loss.item() / coordinator.world_size
|
||
|
return results
|
||
|
|
||
|
if isinstance(test_dataloader, DataLoader):
|
||
|
return evaluate_subset(test_dataloader)
|
||
|
else:
|
||
|
assert len(test_dataloader) == len(eval_splits)
|
||
|
final_results = {}
|
||
|
for split, sub_loader in zip(eval_splits, test_dataloader):
|
||
|
results = evaluate_subset(sub_loader)
|
||
|
final_results.update({f'{k}_{split}': v for k, v in results.items()})
|
||
|
return final_results
|
||
|
|
||
|
|
||
|
def train_epoch(epoch: int, model: nn.Module, optimizer: Optimizer, lr_scheduler, train_dataloader: DataLoader,
|
||
|
booster: Booster, coordinator: DistCoordinator):
|
||
|
model.train()
|
||
|
with tqdm(train_dataloader, desc=f'Epoch [{epoch + 1}/{NUM_EPOCHS}]', disable=not coordinator.is_master()) as pbar:
|
||
|
for batch in pbar:
|
||
|
# Forward pass
|
||
|
batch = move_to_cuda(batch)
|
||
|
outputs = model(**batch)
|
||
|
loss = outputs[0]
|
||
|
|
||
|
# Backward and optimize
|
||
|
booster.backward(loss, optimizer)
|
||
|
optimizer.step()
|
||
|
optimizer.zero_grad()
|
||
|
lr_scheduler.step()
|
||
|
|
||
|
# Print log info
|
||
|
pbar.set_postfix({'loss': loss.item()})
|
||
|
|
||
|
|
||
|
def main():
|
||
|
# ==============================
|
||
|
# Parse Arguments
|
||
|
# ==============================
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument('-t', '--task', default='mrpc', help="GLUE task to run")
|
||
|
parser.add_argument('-p',
|
||
|
'--plugin',
|
||
|
type=str,
|
||
|
default='torch_ddp',
|
||
|
choices=['torch_ddp', 'torch_ddp_fp16', 'gemini', 'low_level_zero'],
|
||
|
help="plugin to use")
|
||
|
parser.add_argument(
|
||
|
"--model_type",
|
||
|
type=str,
|
||
|
default="bert",
|
||
|
help="bert or albert",
|
||
|
)
|
||
|
parser.add_argument('--target_f1', type=float, default=None, help="target f1 score. Raise exception if not reached")
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
if args.model_type == 'bert':
|
||
|
model_name = "bert-base-uncased"
|
||
|
elif args.model_type == 'albert':
|
||
|
model_name = "albert-xxlarge-v2"
|
||
|
else:
|
||
|
raise RuntimeError
|
||
|
# ==============================
|
||
|
# Launch Distributed Environment
|
||
|
# ==============================
|
||
|
colossalai.launch_from_torch(config={}, seed=42)
|
||
|
coordinator = DistCoordinator()
|
||
|
|
||
|
# local_batch_size = BATCH_SIZE // coordinator.world_size
|
||
|
lr = LEARNING_RATE * coordinator.world_size
|
||
|
|
||
|
# ==============================
|
||
|
# Instantiate Plugin and Booster
|
||
|
# ==============================
|
||
|
booster_kwargs = {}
|
||
|
if args.plugin == 'torch_ddp_fp16':
|
||
|
booster_kwargs['mixed_precision'] = 'fp16'
|
||
|
if args.plugin.startswith('torch_ddp'):
|
||
|
plugin = TorchDDPPlugin()
|
||
|
elif args.plugin == 'gemini':
|
||
|
plugin = GeminiPlugin(placement_policy='cuda', strict_ddp_mode=True, initial_scale=2**5)
|
||
|
elif args.plugin == 'low_level_zero':
|
||
|
plugin = LowLevelZeroPlugin(initial_scale=2**5)
|
||
|
|
||
|
booster = Booster(plugin=plugin, **booster_kwargs)
|
||
|
|
||
|
# ==============================
|
||
|
# Prepare Dataloader
|
||
|
# ==============================
|
||
|
data_builder = GLUEDataBuilder(model_name,
|
||
|
plugin,
|
||
|
args.task,
|
||
|
train_batch_size=BATCH_SIZE,
|
||
|
eval_batch_size=BATCH_SIZE)
|
||
|
train_dataloader = data_builder.train_dataloader()
|
||
|
test_dataloader = data_builder.test_dataloader()
|
||
|
|
||
|
# ====================================
|
||
|
# Prepare model, optimizer
|
||
|
# ====================================
|
||
|
# bert pretrained model
|
||
|
|
||
|
cfg = AutoConfig.from_pretrained(model_name, num_labels=data_builder.num_labels)
|
||
|
if model_name == "bert-base-uncased":
|
||
|
model = BertForSequenceClassification.from_pretrained(model_name, config=cfg)
|
||
|
elif model_name == "albert-xxlarge-v2":
|
||
|
model = AlbertForSequenceClassification.from_pretrained(model_name, config=cfg)
|
||
|
else:
|
||
|
raise RuntimeError
|
||
|
|
||
|
# optimizer
|
||
|
no_decay = ["bias", "LayerNorm.weight"]
|
||
|
optimizer_grouped_parameters = [
|
||
|
{
|
||
|
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
||
|
"weight_decay": WEIGHT_DECAY,
|
||
|
},
|
||
|
{
|
||
|
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
|
||
|
"weight_decay": 0.0,
|
||
|
},
|
||
|
]
|
||
|
|
||
|
optimizer = HybridAdam(optimizer_grouped_parameters, lr=lr, eps=1e-8)
|
||
|
|
||
|
# lr scheduler
|
||
|
total_steps = len(train_dataloader) * NUM_EPOCHS
|
||
|
num_warmup_steps = int(WARMUP_FRACTION * total_steps)
|
||
|
lr_scheduler = get_linear_schedule_with_warmup(
|
||
|
optimizer,
|
||
|
num_warmup_steps=num_warmup_steps,
|
||
|
num_training_steps=total_steps,
|
||
|
)
|
||
|
|
||
|
# ==============================
|
||
|
# Boost with ColossalAI
|
||
|
# ==============================
|
||
|
model, optimizer, _, _, lr_scheduler = booster.boost(model, optimizer, lr_scheduler=lr_scheduler)
|
||
|
|
||
|
# ==============================
|
||
|
# Train model
|
||
|
# ==============================
|
||
|
for epoch in range(NUM_EPOCHS):
|
||
|
train_epoch(epoch, model, optimizer, lr_scheduler, train_dataloader, booster, coordinator)
|
||
|
|
||
|
results = evaluate_model(model, test_dataloader, data_builder.num_labels, args.task, data_builder.eval_splits,
|
||
|
coordinator)
|
||
|
|
||
|
if coordinator.is_master():
|
||
|
print(results)
|
||
|
if args.target_f1 is not None and 'f1' in results:
|
||
|
assert results['f1'] >= args.target_f1, f'f1 score {results["f1"]} is lower than target {args.target_f1}'
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
main()
|