mirror of https://github.com/hpcaitech/ColossalAI
wukong1992
1 year ago
committed by
GitHub
10 changed files with 727 additions and 355 deletions
@ -0,0 +1,34 @@
|
||||
## Overview |
||||
|
||||
This directory includes two parts: Using the Booster API fintune Huggingface Bert and AlBert models and benchmarking Bert and AlBert models with different Booster Plugin. |
||||
|
||||
## Finetune |
||||
``` |
||||
bash test_ci.sh |
||||
``` |
||||
|
||||
## Benchmark |
||||
``` |
||||
bash benchmark.sh |
||||
``` |
||||
|
||||
Now include these metrics in benchmark: CUDA mem occupy, throughput and the number of model parameters. If you have custom metrics, you can add them to benchmark_util. |
||||
|
||||
## Results |
||||
|
||||
### Bert |
||||
|
||||
| | max cuda mem | throughput(sample/s) | params | |
||||
| :-----| -----------: | :--------: | :----: | |
||||
| ddp | 21.44 GB | 3.0 | 82M | |
||||
| ddp_fp16 | 16.26 GB | 11.3 | 82M | |
||||
| gemini | 11.0 GB | 12.9 | 82M | |
||||
| low_level_zero | 11.29 G | 14.7 | 82M | |
||||
|
||||
### AlBert |
||||
| | max cuda mem | throughput(sample/s) | params | |
||||
| :-----| -----------: | :--------: | :----: | |
||||
| ddp | OOM | | | |
||||
| ddp_fp16 | OOM | | | |
||||
| gemini | 69.39 G | 1.3 | 208M | |
||||
| low_level_zero | 56.89 G | 1.4 | 208M | |
@ -0,0 +1,174 @@
|
||||
import argparse |
||||
|
||||
import torch |
||||
from benchmark_utils import benchmark |
||||
from torch.utils.data import DataLoader, Dataset |
||||
from transformers import ( |
||||
AlbertConfig, |
||||
AlbertForSequenceClassification, |
||||
BertConfig, |
||||
BertForSequenceClassification, |
||||
get_linear_schedule_with_warmup, |
||||
) |
||||
|
||||
import colossalai |
||||
from colossalai.booster import Booster |
||||
from colossalai.booster.plugin import GeminiPlugin, LowLevelZeroPlugin, TorchDDPPlugin |
||||
from colossalai.cluster import DistCoordinator |
||||
from colossalai.nn.optimizer import HybridAdam |
||||
|
||||
# ============================== |
||||
# Prepare Hyperparameters |
||||
# ============================== |
||||
NUM_EPOCHS = 3 |
||||
BATCH_SIZE = 32 |
||||
LEARNING_RATE = 2.4e-5 |
||||
WEIGHT_DECAY = 0.01 |
||||
WARMUP_FRACTION = 0.1 |
||||
SEQ_LEN = 512 |
||||
VOCAB_SIZE = 1000 |
||||
NUM_LABELS = 10 |
||||
DATASET_LEN = 1000 |
||||
|
||||
|
||||
class RandintDataset(Dataset): |
||||
|
||||
def __init__(self, dataset_length: int, sequence_length: int, vocab_size: int, n_class: int): |
||||
|
||||
self._sequence_length = sequence_length |
||||
self._vocab_size = vocab_size |
||||
self._n_class = n_class |
||||
self._dataset_length = dataset_length |
||||
self._datas = torch.randint( |
||||
low=0, |
||||
high=self._vocab_size, |
||||
size=(self._dataset_length, self._sequence_length,), |
||||
dtype=torch.long, |
||||
) |
||||
self._labels = torch.randint(low=0, high=self._n_class, size=(self._dataset_length, 1), dtype=torch.long) |
||||
|
||||
def __len__(self): |
||||
return self._dataset_length |
||||
|
||||
def __getitem__(self, idx): |
||||
return self._datas[idx], self._labels[idx] |
||||
|
||||
|
||||
def main(): |
||||
# ============================== |
||||
# Parse Arguments |
||||
# ============================== |
||||
parser = argparse.ArgumentParser() |
||||
parser.add_argument('-t', '--task', default='mrpc', help="GLUE task to run") |
||||
parser.add_argument('-p', |
||||
'--plugin', |
||||
type=str, |
||||
default='torch_ddp', |
||||
choices=['torch_ddp', 'torch_ddp_fp16', 'gemini', 'low_level_zero'], |
||||
help="plugin to use") |
||||
parser.add_argument( |
||||
"--model_type", |
||||
type=str, |
||||
default="bert", |
||||
help="bert or albert", |
||||
) |
||||
|
||||
args = parser.parse_args() |
||||
|
||||
# ============================== |
||||
# Launch Distributed Environment |
||||
# ============================== |
||||
colossalai.launch_from_torch(config={}, seed=42) |
||||
coordinator = DistCoordinator() |
||||
|
||||
# local_batch_size = BATCH_SIZE // coordinator.world_size |
||||
lr = LEARNING_RATE * coordinator.world_size |
||||
|
||||
# ============================== |
||||
# Instantiate Plugin and Booster |
||||
# ============================== |
||||
booster_kwargs = {} |
||||
if args.plugin == 'torch_ddp_fp16': |
||||
booster_kwargs['mixed_precision'] = 'fp16' |
||||
if args.plugin.startswith('torch_ddp'): |
||||
plugin = TorchDDPPlugin() |
||||
elif args.plugin == 'gemini': |
||||
plugin = GeminiPlugin(placement_policy='cuda', strict_ddp_mode=True, initial_scale=2**5) |
||||
elif args.plugin == 'low_level_zero': |
||||
plugin = LowLevelZeroPlugin(initial_scale=2**5) |
||||
|
||||
booster = Booster(plugin=plugin, **booster_kwargs) |
||||
|
||||
# ============================== |
||||
# Prepare Dataloader |
||||
# ============================== |
||||
|
||||
train_dataset = RandintDataset(dataset_length=DATASET_LEN, |
||||
sequence_length=SEQ_LEN, |
||||
vocab_size=VOCAB_SIZE, |
||||
n_class=NUM_LABELS) |
||||
train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE) |
||||
|
||||
# ==================================== |
||||
# Prepare model, optimizer |
||||
# ==================================== |
||||
# bert pretrained model |
||||
|
||||
if args.model_type == "bert": |
||||
cfg = BertConfig(vocab_size=VOCAB_SIZE, num_labels=NUM_LABELS) |
||||
model = BertForSequenceClassification(cfg) |
||||
elif args.model_type == "albert": |
||||
cfg = AlbertConfig(vocab_size=VOCAB_SIZE, num_labels=NUM_LABELS) |
||||
model = AlbertForSequenceClassification(cfg) |
||||
else: |
||||
raise RuntimeError |
||||
|
||||
# optimizer |
||||
no_decay = ["bias", "LayerNorm.weight"] |
||||
optimizer_grouped_parameters = [ |
||||
{ |
||||
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], |
||||
"weight_decay": WEIGHT_DECAY, |
||||
}, |
||||
{ |
||||
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], |
||||
"weight_decay": 0.0, |
||||
}, |
||||
] |
||||
|
||||
optimizer = HybridAdam(optimizer_grouped_parameters, lr=lr, eps=1e-8) |
||||
|
||||
# lr scheduler |
||||
total_steps = len(train_dataloader) * NUM_EPOCHS |
||||
num_warmup_steps = int(WARMUP_FRACTION * total_steps) |
||||
lr_scheduler = get_linear_schedule_with_warmup( |
||||
optimizer, |
||||
num_warmup_steps=num_warmup_steps, |
||||
num_training_steps=total_steps, |
||||
) |
||||
|
||||
# criterion |
||||
criterion = lambda inputs: inputs[0] |
||||
|
||||
# ============================== |
||||
# Boost with ColossalAI |
||||
# ============================== |
||||
model, optimizer, _, _, lr_scheduler = booster.boost(model, optimizer, lr_scheduler=lr_scheduler) |
||||
|
||||
# ============================== |
||||
# Benchmark model |
||||
# ============================== |
||||
|
||||
results = benchmark(model, |
||||
booster, |
||||
optimizer, |
||||
lr_scheduler, |
||||
train_dataloader, |
||||
criterion=criterion, |
||||
epoch_num=NUM_EPOCHS) |
||||
|
||||
coordinator.print_on_master(results) |
||||
|
||||
|
||||
if __name__ == '__main__': |
||||
main() |
@ -0,0 +1,9 @@
|
||||
#!/bin/bash |
||||
set -xe |
||||
|
||||
pip install -r requirements.txt |
||||
|
||||
for plugin in "torch_ddp" "torch_ddp_fp16" "gemini" "low_level_zero"; do |
||||
torchrun --standalone --nproc_per_node 2 benchmark.py --plugin $plugin --model_type "bert" |
||||
torchrun --standalone --nproc_per_node 2 benchmark.py --plugin $plugin --model_type "albert" |
||||
done |
@ -0,0 +1,146 @@
|
||||
import inspect |
||||
from logging import getLogger |
||||
from time import time |
||||
from typing import Callable |
||||
|
||||
import torch |
||||
import yaml |
||||
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler |
||||
from torch.utils.data import DataLoader |
||||
from tqdm import tqdm |
||||
|
||||
from colossalai.booster import Booster |
||||
from colossalai.cluster import DistCoordinator |
||||
|
||||
logger = getLogger("colossalai-booster-benchmark") |
||||
_INVALID = float("nan") |
||||
|
||||
|
||||
def format_num(num: int, bytes=False): |
||||
"""Scale bytes to its proper format, e.g. 1253656 => '1.20MB'""" |
||||
factor = 1024 if bytes else 1000 |
||||
suffix = "B" if bytes else "" |
||||
for unit in ["", " K", " M", " G", " T", " P"]: |
||||
if num < factor: |
||||
return f"{num:.2f}{unit}{suffix}" |
||||
num /= factor |
||||
|
||||
|
||||
def _is_valid(val): |
||||
return val == val |
||||
|
||||
|
||||
def get_call_arg_names(module_or_fn): |
||||
if isinstance(module_or_fn, torch.nn.Module): |
||||
return inspect.getfullargspec(module_or_fn.forward)[0][1:] |
||||
return inspect.getfullargspec(module_or_fn)[0] |
||||
|
||||
|
||||
def measure_params(model): |
||||
num_params = _INVALID |
||||
|
||||
try: |
||||
num_params = sum(p.numel() for p in model.parameters() if p.requires_grad) |
||||
except AttributeError as e: |
||||
logger.error(f"Unable to measure model params due to error: {e}") |
||||
|
||||
return num_params |
||||
|
||||
|
||||
def warm_up( |
||||
model, |
||||
booster, |
||||
dataloader, |
||||
criterion, |
||||
optimizer, |
||||
lr_scheduler, |
||||
num_runs=10, |
||||
): |
||||
for i, data in enumerate(dataloader): |
||||
if i > num_runs: |
||||
break |
||||
inputs, labels = data[0].cuda(), data[1].cuda() |
||||
outputs = model(inputs, labels=labels) |
||||
loss = criterion(outputs) |
||||
booster.backward(loss, optimizer) |
||||
optimizer.step() |
||||
lr_scheduler.step() |
||||
optimizer.zero_grad() |
||||
|
||||
|
||||
def fmt(d: dict): |
||||
return yaml.dump(d) |
||||
|
||||
|
||||
def benchmark( |
||||
model: torch.nn.Module, |
||||
booster: Booster, |
||||
optimizer: torch.optim.Optimizer, |
||||
lr_scheduler: LRScheduler, |
||||
dataloader: DataLoader, |
||||
criterion: Callable = None, |
||||
warm_up_fn=warm_up, |
||||
epoch_num: int = 3, |
||||
batch_size: int = 32, |
||||
warm_up_steps: int = 3, |
||||
): |
||||
results = {} |
||||
model_device = torch.cuda.current_device() |
||||
|
||||
# Warm up |
||||
warm_up_fn( |
||||
model, |
||||
booster, |
||||
dataloader, |
||||
criterion, |
||||
optimizer, |
||||
lr_scheduler, |
||||
num_runs=warm_up_steps, |
||||
) |
||||
# Measure params |
||||
params = measure_params(model) |
||||
if _is_valid(params): |
||||
results["params"] = format_num(params) |
||||
logger.info(f"Model parameters: {params} ({format_num(params)})") |
||||
|
||||
# Measure Allocated Memory and Throughput |
||||
memory = {} |
||||
throughput = {} |
||||
torch.cuda.reset_peak_memory_stats(device=model_device) |
||||
pre_mem = torch.cuda.memory_allocated(device=model_device) |
||||
|
||||
start_time = time() |
||||
|
||||
for epoch in range(epoch_num): |
||||
with tqdm(dataloader, desc=f'Epoch [{epoch + 1}/{epoch_num}]', |
||||
disable=not DistCoordinator().is_master()) as pbar: |
||||
for data in pbar: |
||||
inputs, labels = data[0].cuda(), data[1].cuda() |
||||
outputs = model(inputs, labels=labels) |
||||
loss = criterion(outputs) |
||||
booster.backward(loss, optimizer) |
||||
optimizer.step() |
||||
lr_scheduler.step() |
||||
optimizer.zero_grad() |
||||
|
||||
end_time = time() |
||||
|
||||
all_sample = epoch_num * len(dataloader) |
||||
|
||||
post_mem = torch.cuda.memory_allocated(device=model_device) |
||||
max_mem = torch.cuda.max_memory_allocated(device=model_device) |
||||
|
||||
memory[f"batch_size_{batch_size}"] = { |
||||
"cuda_pre_training_bytes": format_num(pre_mem, bytes=True), |
||||
"cuda_max_training_bytes": format_num(max_mem, bytes=True), |
||||
"cuda_post_training_bytes": format_num(post_mem, bytes=True), |
||||
} |
||||
logger.info(fmt({f"Memory results (batch_size={batch_size})": memory[f"batch_size_{batch_size}"]})) |
||||
|
||||
throughput[f"batch_size_{batch_size}"] = {"throughput:": "{:.1f}".format(all_sample * DistCoordinator().world_size / (end_time - start_time))} |
||||
logger.info(fmt({f"Throughput results (batch_size={batch_size})": throughput[f"batch_size_{batch_size}"]})) |
||||
|
||||
results["throughput"] = throughput |
||||
results["memory"] = memory |
||||
|
||||
return results |
@ -0,0 +1,127 @@
|
||||
import datasets |
||||
from transformers import AutoTokenizer, PreTrainedTokenizer |
||||
|
||||
from colossalai.booster.plugin.dp_plugin_base import DPPluginBase |
||||
|
||||
|
||||
class GLUEDataBuilder: |
||||
|
||||
task_text_field_map = { |
||||
"cola": ["sentence"], |
||||
"sst2": ["sentence"], |
||||
"mrpc": ["sentence1", "sentence2"], |
||||
"qqp": ["question1", "question2"], |
||||
"stsb": ["sentence1", "sentence2"], |
||||
"mnli": ["premise", "hypothesis"], |
||||
"qnli": ["question", "sentence"], |
||||
"rte": ["sentence1", "sentence2"], |
||||
"wnli": ["sentence1", "sentence2"], |
||||
"ax": ["premise", "hypothesis"], |
||||
} |
||||
|
||||
glue_task_num_labels = { |
||||
"cola": 2, |
||||
"sst2": 2, |
||||
"mrpc": 2, |
||||
"qqp": 2, |
||||
"stsb": 1, |
||||
"mnli": 3, |
||||
"qnli": 2, |
||||
"rte": 2, |
||||
"wnli": 2, |
||||
"ax": 3, |
||||
} |
||||
|
||||
loader_columns = [ |
||||
"datasets_idx", |
||||
"input_ids", |
||||
"token_type_ids", |
||||
"attention_mask", |
||||
"start_positions", |
||||
"end_positions", |
||||
"labels", |
||||
] |
||||
|
||||
def __init__( |
||||
self, |
||||
model_name_or_path: str, |
||||
plugin: DPPluginBase, |
||||
task_name: str = "mrpc", |
||||
max_seq_length: int = 128, |
||||
train_batch_size: int = 32, |
||||
eval_batch_size: int = 32, |
||||
**kwargs, |
||||
): |
||||
super().__init__() |
||||
self.model_name_or_path = model_name_or_path |
||||
self.task_name = task_name |
||||
self.max_seq_length = max_seq_length |
||||
self.train_batch_size = train_batch_size |
||||
self.eval_batch_size = eval_batch_size |
||||
self.plugin = plugin |
||||
|
||||
self.text_fields = self.task_text_field_map[task_name] |
||||
self.num_labels = self.glue_task_num_labels[task_name] |
||||
self.tokenizer: PreTrainedTokenizer = AutoTokenizer.from_pretrained(self.model_name_or_path, use_fast=True) |
||||
self.setup() |
||||
|
||||
def setup(self): |
||||
self.dataset = datasets.load_dataset("glue", self.task_name) |
||||
|
||||
for split in self.dataset.keys(): |
||||
self.dataset[split] = self.dataset[split].map( |
||||
self.convert_to_features, |
||||
batched=True, |
||||
remove_columns=["label"], |
||||
) |
||||
self.columns = [c for c in self.dataset[split].column_names if c in self.loader_columns] |
||||
self.dataset[split].set_format(type="torch", columns=self.columns) |
||||
|
||||
self.eval_splits = [x for x in self.dataset.keys() if "validation" in x] |
||||
|
||||
def prepare_data(self): |
||||
datasets.load_dataset("glue", self.task_name) |
||||
AutoTokenizer.from_pretrained(self.model_name_or_path, use_fast=True) |
||||
|
||||
def train_dataloader(self): |
||||
return self.plugin.prepare_dataloader(self.dataset["train"], |
||||
batch_size=self.train_batch_size, |
||||
shuffle=True, |
||||
drop_last=True) |
||||
|
||||
def val_dataloader(self): |
||||
if len(self.eval_splits) == 1: |
||||
return self.plugin.prepare_dataloader(self.dataset["validation"], batch_size=self.eval_batch_size) |
||||
elif len(self.eval_splits) > 1: |
||||
return [ |
||||
self.plugin.prepare_dataloader(self.dataset[x], batch_size=self.eval_batch_size) |
||||
for x in self.eval_splits |
||||
] |
||||
|
||||
def test_dataloader(self): |
||||
if len(self.eval_splits) == 1: |
||||
return self.plugin.prepare_dataloader(self.dataset["test"], batch_size=self.eval_batch_size) |
||||
elif len(self.eval_splits) > 1: |
||||
return [ |
||||
self.plugin.prepare_dataloader(self.dataset[x], batch_size=self.eval_batch_size) |
||||
for x in self.eval_splits |
||||
] |
||||
|
||||
def convert_to_features(self, example_batch): |
||||
|
||||
# Either encode single sentence or sentence pairs |
||||
if len(self.text_fields) > 1: |
||||
texts_or_text_pairs = list(zip(example_batch[self.text_fields[0]], example_batch[self.text_fields[1]])) |
||||
else: |
||||
texts_or_text_pairs = example_batch[self.text_fields[0]] |
||||
|
||||
# Tokenize the text/text pairs |
||||
features = self.tokenizer.batch_encode_plus(texts_or_text_pairs, |
||||
max_length=self.max_seq_length, |
||||
padding='max_length', |
||||
truncation=True) |
||||
|
||||
# Rename label to labels to make it easier to pass to model forward |
||||
features["labels"] = example_batch["label"] |
||||
|
||||
return features |
@ -0,0 +1,220 @@
|
||||
import argparse |
||||
from typing import List, Union |
||||
|
||||
import evaluate |
||||
import torch |
||||
import torch.distributed as dist |
||||
import torch.nn as nn |
||||
from data import GLUEDataBuilder |
||||
from torch.optim import Optimizer |
||||
from torch.utils.data import DataLoader |
||||
from tqdm import tqdm |
||||
from transformers import ( |
||||
AlbertForSequenceClassification, |
||||
AutoConfig, |
||||
BertForSequenceClassification, |
||||
get_linear_schedule_with_warmup, |
||||
) |
||||
|
||||
import colossalai |
||||
from colossalai.booster import Booster |
||||
from colossalai.booster.plugin import GeminiPlugin, LowLevelZeroPlugin, TorchDDPPlugin |
||||
from colossalai.cluster import DistCoordinator |
||||
from colossalai.nn.optimizer import HybridAdam |
||||
from colossalai.utils import get_current_device |
||||
|
||||
# ============================== |
||||
# Prepare Hyperparameters |
||||
# ============================== |
||||
NUM_EPOCHS = 3 |
||||
BATCH_SIZE = 32 |
||||
LEARNING_RATE = 2.4e-5 |
||||
WEIGHT_DECAY = 0.01 |
||||
WARMUP_FRACTION = 0.1 |
||||
|
||||
|
||||
def move_to_cuda(batch): |
||||
return {k: v.cuda() for k, v in batch.items()} |
||||
|
||||
|
||||
@torch.no_grad() |
||||
def evaluate_model(model: nn.Module, test_dataloader: Union[DataLoader, List[DataLoader]], num_labels: int, task_name: str, |
||||
eval_splits: List[str], coordinator: DistCoordinator): |
||||
metric = evaluate.load("glue", task_name, process_id=coordinator.rank, num_process=coordinator.world_size) |
||||
model.eval() |
||||
|
||||
def evaluate_subset(dataloader: DataLoader): |
||||
accum_loss = torch.zeros(1, device=get_current_device()) |
||||
for batch in dataloader: |
||||
batch = move_to_cuda(batch) |
||||
outputs = model(**batch) |
||||
val_loss, logits = outputs[:2] |
||||
accum_loss.add_(val_loss) |
||||
|
||||
if num_labels > 1: |
||||
preds = torch.argmax(logits, axis=1) |
||||
elif num_labels == 1: |
||||
preds = logits.squeeze() |
||||
|
||||
labels = batch["labels"] |
||||
|
||||
metric.add_batch(predictions=preds, references=labels) |
||||
|
||||
results = metric.compute() |
||||
dist.all_reduce(accum_loss.div_(len(dataloader))) |
||||
if coordinator.is_master(): |
||||
results['loss'] = accum_loss.item() / coordinator.world_size |
||||
return results |
||||
|
||||
if isinstance(test_dataloader, DataLoader): |
||||
return evaluate_subset(test_dataloader) |
||||
else: |
||||
assert len(test_dataloader) == len(eval_splits) |
||||
final_results = {} |
||||
for split, sub_loader in zip(eval_splits, test_dataloader): |
||||
results = evaluate_subset(sub_loader) |
||||
final_results.update({f'{k}_{split}': v for k, v in results.items()}) |
||||
return final_results |
||||
|
||||
|
||||
def train_epoch(epoch: int, model: nn.Module, optimizer: Optimizer, lr_scheduler, train_dataloader: DataLoader, |
||||
booster: Booster, coordinator: DistCoordinator): |
||||
model.train() |
||||
with tqdm(train_dataloader, desc=f'Epoch [{epoch + 1}/{NUM_EPOCHS}]', disable=not coordinator.is_master()) as pbar: |
||||
for batch in pbar: |
||||
# Forward pass |
||||
batch = move_to_cuda(batch) |
||||
outputs = model(**batch) |
||||
loss = outputs[0] |
||||
|
||||
# Backward and optimize |
||||
booster.backward(loss, optimizer) |
||||
optimizer.step() |
||||
optimizer.zero_grad() |
||||
lr_scheduler.step() |
||||
|
||||
# Print log info |
||||
pbar.set_postfix({'loss': loss.item()}) |
||||
|
||||
|
||||
def main(): |
||||
# ============================== |
||||
# Parse Arguments |
||||
# ============================== |
||||
parser = argparse.ArgumentParser() |
||||
parser.add_argument('-t', '--task', default='mrpc', help="GLUE task to run") |
||||
parser.add_argument('-p', |
||||
'--plugin', |
||||
type=str, |
||||
default='torch_ddp', |
||||
choices=['torch_ddp', 'torch_ddp_fp16', 'gemini', 'low_level_zero'], |
||||
help="plugin to use") |
||||
parser.add_argument( |
||||
"--model_type", |
||||
type=str, |
||||
default="bert", |
||||
help="bert or albert", |
||||
) |
||||
parser.add_argument('--target_f1', type=float, default=None, help="target f1 score. Raise exception if not reached") |
||||
args = parser.parse_args() |
||||
|
||||
if args.model_type == 'bert': |
||||
model_name = "bert-base-uncased" |
||||
elif args.model_type == 'albert': |
||||
model_name = "albert-xxlarge-v2" |
||||
else: |
||||
raise RuntimeError |
||||
# ============================== |
||||
# Launch Distributed Environment |
||||
# ============================== |
||||
colossalai.launch_from_torch(config={}, seed=42) |
||||
coordinator = DistCoordinator() |
||||
|
||||
# local_batch_size = BATCH_SIZE // coordinator.world_size |
||||
lr = LEARNING_RATE * coordinator.world_size |
||||
|
||||
# ============================== |
||||
# Instantiate Plugin and Booster |
||||
# ============================== |
||||
booster_kwargs = {} |
||||
if args.plugin == 'torch_ddp_fp16': |
||||
booster_kwargs['mixed_precision'] = 'fp16' |
||||
if args.plugin.startswith('torch_ddp'): |
||||
plugin = TorchDDPPlugin() |
||||
elif args.plugin == 'gemini': |
||||
plugin = GeminiPlugin(placement_policy='cuda', strict_ddp_mode=True, initial_scale=2**5) |
||||
elif args.plugin == 'low_level_zero': |
||||
plugin = LowLevelZeroPlugin(initial_scale=2**5) |
||||
|
||||
booster = Booster(plugin=plugin, **booster_kwargs) |
||||
|
||||
# ============================== |
||||
# Prepare Dataloader |
||||
# ============================== |
||||
data_builder = GLUEDataBuilder(model_name, |
||||
plugin, |
||||
args.task, |
||||
train_batch_size=BATCH_SIZE, |
||||
eval_batch_size=BATCH_SIZE) |
||||
train_dataloader = data_builder.train_dataloader() |
||||
test_dataloader = data_builder.test_dataloader() |
||||
|
||||
# ==================================== |
||||
# Prepare model, optimizer |
||||
# ==================================== |
||||
# bert pretrained model |
||||
|
||||
cfg = AutoConfig.from_pretrained(model_name, num_labels=data_builder.num_labels) |
||||
if model_name == "bert-base-uncased": |
||||
model = BertForSequenceClassification.from_pretrained(model_name, config=cfg) |
||||
elif model_name == "albert-xxlarge-v2": |
||||
model = AlbertForSequenceClassification.from_pretrained(model_name, config=cfg) |
||||
else: |
||||
raise RuntimeError |
||||
|
||||
# optimizer |
||||
no_decay = ["bias", "LayerNorm.weight"] |
||||
optimizer_grouped_parameters = [ |
||||
{ |
||||
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], |
||||
"weight_decay": WEIGHT_DECAY, |
||||
}, |
||||
{ |
||||
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], |
||||
"weight_decay": 0.0, |
||||
}, |
||||
] |
||||
|
||||
optimizer = HybridAdam(optimizer_grouped_parameters, lr=lr, eps=1e-8) |
||||
|
||||
# lr scheduler |
||||
total_steps = len(train_dataloader) * NUM_EPOCHS |
||||
num_warmup_steps = int(WARMUP_FRACTION * total_steps) |
||||
lr_scheduler = get_linear_schedule_with_warmup( |
||||
optimizer, |
||||
num_warmup_steps=num_warmup_steps, |
||||
num_training_steps=total_steps, |
||||
) |
||||
|
||||
# ============================== |
||||
# Boost with ColossalAI |
||||
# ============================== |
||||
model, optimizer, _, _, lr_scheduler = booster.boost(model, optimizer, lr_scheduler=lr_scheduler) |
||||
|
||||
# ============================== |
||||
# Train model |
||||
# ============================== |
||||
for epoch in range(NUM_EPOCHS): |
||||
train_epoch(epoch, model, optimizer, lr_scheduler, train_dataloader, booster, coordinator) |
||||
|
||||
results = evaluate_model(model, test_dataloader, data_builder.num_labels, args.task, data_builder.eval_splits, |
||||
coordinator) |
||||
|
||||
if coordinator.is_master(): |
||||
print(results) |
||||
if args.target_f1 is not None and 'f1' in results: |
||||
assert results['f1'] >= args.target_f1, f'f1 score {results["f1"]} is lower than target {args.target_f1}' |
||||
|
||||
|
||||
if __name__ == '__main__': |
||||
main() |
@ -0,0 +1,9 @@
|
||||
colossalai |
||||
evaluate |
||||
datasets |
||||
torch |
||||
tqdm |
||||
transformers |
||||
scipy |
||||
scikit-learn |
||||
ptflops |
@ -1,22 +0,0 @@
|
||||
set -x |
||||
# distplan in ["CAI_ZeRO1", "CAI_ZeRO2", "CAI_Gemini", "Pytorch_DDP", "Pytorch_ZeRO"] |
||||
export DISTPLAN=${DISTPLAN:-"CAI_Gemini"} |
||||
|
||||
# The following options only valid when DISTPLAN="colossalai" |
||||
export GPUNUM=${GPUNUM:-1} |
||||
export PLACEMENT=${PLACEMENT:-"cpu"} |
||||
export BATCH_SIZE=${BATCH_SIZE:-16} |
||||
|
||||
# bert | albert |
||||
export MODEL_TYPE=${MODEL_TYPE:-"bert"} |
||||
export TRAIN_STEP=${TRAIN_STEP:-10} |
||||
|
||||
mkdir -p gemini_logs |
||||
|
||||
env CUDA_LAUNCH_BLOCKING=1 torchrun --standalone --nproc_per_node=${GPUNUM} ./train_bert_demo.py \ |
||||
--model_type=${MODEL_TYPE} \ |
||||
--batch_size=${BATCH_SIZE} \ |
||||
--placement=${PLACEMENT} \ |
||||
--distplan=${DISTPLAN} \ |
||||
--train_step=${TRAIN_STEP} \ |
||||
2>&1 | tee ./gemini_logs/${MODEL_TYPE}_${DISTPLAN}_gpu_${GPUNUM}_bs_${BATCH_SIZE}_${PLACEMENT}.log |
@ -1,2 +1,8 @@
|
||||
set -x |
||||
env GPUNUM=1 bash run_gemini.sh |
||||
#!/bin/bash |
||||
set -xe |
||||
|
||||
pip install -r requirements.txt |
||||
|
||||
for plugin in "torch_ddp" "torch_ddp_fp16" "gemini" "low_level_zero"; do |
||||
torchrun --standalone --nproc_per_node 4 finetune.py --target_f1 0.86 --plugin $plugin --model_type "bert" |
||||
done |
||||
|
@ -1,331 +0,0 @@
|
||||
import os |
||||
from functools import partial |
||||
from time import time |
||||
|
||||
import psutil |
||||
import torch |
||||
from packaging import version |
||||
from torch import nn |
||||
from torch.nn.parallel import DistributedDataParallel as DDP |
||||
from transformers import AlbertConfig, AlbertForSequenceClassification, BertConfig, BertForSequenceClassification |
||||
|
||||
import colossalai |
||||
from colossalai.logging import disable_existing_loggers, get_dist_logger |
||||
from colossalai.nn.optimizer import HybridAdam |
||||
from colossalai.tensor import ColoParameter, ComputePattern, ComputeSpec, ProcessGroup, ReplicaSpec, ShardSpec |
||||
from colossalai.utils import get_current_device |
||||
from colossalai.zero import ColoInitContext, zero_model_wrapper, zero_optim_wrapper |
||||
|
||||
CAI_VERSION = colossalai.__version__ |
||||
|
||||
|
||||
def get_tflops(model_numel, batch_size, seq_len, step_time): |
||||
return model_numel * batch_size * seq_len * 8 / 1e12 / (step_time + 1e-12) |
||||
|
||||
|
||||
def get_profile_context(enable_flag, warmup_steps, active_steps, save_dir): |
||||
from contextlib import nullcontext |
||||
|
||||
from torch.profiler import ProfilerActivity, profile, schedule, tensorboard_trace_handler |
||||
if enable_flag: |
||||
return profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], |
||||
schedule=schedule(wait=0, warmup=warmup_steps, active=active_steps), |
||||
on_trace_ready=tensorboard_trace_handler(save_dir), |
||||
record_shapes=True, |
||||
profile_memory=True) |
||||
else: |
||||
|
||||
class DummyProfiler: |
||||
|
||||
def __init__(self): |
||||
self.step_number = 0 |
||||
|
||||
def step(self): |
||||
self.step_number += 1 |
||||
|
||||
return nullcontext(DummyProfiler()) |
||||
|
||||
|
||||
def get_time_stamp(): |
||||
import time |
||||
cur_time = time.strftime("%d-%H:%M", time.localtime()) |
||||
return cur_time |
||||
|
||||
|
||||
def get_bert_data(batch_size: int, sequence_length: int, vacob_size: int, n_class: int, device: torch.device): |
||||
input = torch.randint( |
||||
low=0, |
||||
high=vacob_size, |
||||
size=(batch_size, sequence_length), |
||||
device=device, |
||||
dtype=torch.long, |
||||
) |
||||
label = torch.randint(low=0, high=n_class, size=(batch_size,), device=device, dtype=torch.long) |
||||
return input, label |
||||
|
||||
|
||||
def parse_args(): |
||||
parser = colossalai.get_default_parser() |
||||
parser.add_argument( |
||||
"--distplan", |
||||
type=str, |
||||
default='CAI_Gemini', |
||||
help="The distributed plan [colossalai, zero1, zero2, torch_ddp, torch_zero].", |
||||
) |
||||
parser.add_argument( |
||||
"--placement", |
||||
type=str, |
||||
default='cpu', |
||||
help="Placement Policy for Gemini. Valid when using colossalai as dist plan.", |
||||
) |
||||
parser.add_argument( |
||||
"--batch_size", |
||||
type=int, |
||||
default=8, |
||||
help="batch size per DP group of training.", |
||||
) |
||||
parser.add_argument( |
||||
"--model_type", |
||||
type=str, |
||||
default="bert", |
||||
help="bert or albert", |
||||
) |
||||
parser.add_argument( |
||||
"--train_step", |
||||
type=int, |
||||
default=10, |
||||
help="training iterations for test", |
||||
) |
||||
|
||||
args = parser.parse_args() |
||||
return args |
||||
|
||||
|
||||
SEQ_LEN = 512 |
||||
VOCAB_SIZE = 1000 |
||||
NUM_LABELS = 10 |
||||
|
||||
|
||||
# Parameter Sharding Strategies for Tensor Parallelism |
||||
def split_param_single_dim_tp1d(dim: int, param: ColoParameter, pg: ProcessGroup): |
||||
spec = (ShardSpec([dim], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) |
||||
param.set_tensor_spec(*spec) |
||||
|
||||
|
||||
def split_param_row_tp1d(param: ColoParameter, pg: ProcessGroup): |
||||
split_param_single_dim_tp1d(0, param, pg) |
||||
|
||||
|
||||
def split_param_col_tp1d(param: ColoParameter, pg: ProcessGroup): |
||||
split_param_single_dim_tp1d(-1, param, pg) |
||||
|
||||
|
||||
def get_cpu_mem(): |
||||
return psutil.Process().memory_info().rss / 1024**2 |
||||
|
||||
|
||||
def get_gpu_mem(): |
||||
return torch.cuda.memory_allocated() / 1024**2 |
||||
|
||||
|
||||
def get_mem_info(prefix=''): |
||||
return f'{prefix}GPU memory usage: {get_gpu_mem():.2f} MB, CPU memory usage: {get_cpu_mem():.2f} MB' |
||||
|
||||
|
||||
def get_model_size(model: nn.Module): |
||||
total_numel = 0 |
||||
for module in model.modules(): |
||||
for p in module.parameters(recurse=False): |
||||
total_numel += p.numel() |
||||
return total_numel |
||||
|
||||
|
||||
def model_builder(args): |
||||
if args.model_type == "bert": |
||||
cfg = BertConfig(vocab_size=VOCAB_SIZE, num_labels=NUM_LABELS) |
||||
return BertForSequenceClassification(cfg) |
||||
elif args.model_type == "albert": |
||||
cfg = AlbertConfig(vocab_size=VOCAB_SIZE, num_labels=NUM_LABELS) |
||||
return AlbertForSequenceClassification(cfg) |
||||
else: |
||||
raise RuntimeError |
||||
|
||||
|
||||
def model_size_formatter(numel: int) -> str: |
||||
GB_SIZE = 10**9 |
||||
MB_SIZE = 10**6 |
||||
KB_SIZE = 10**3 |
||||
if numel >= GB_SIZE: |
||||
return f'{numel / GB_SIZE:.1f}B' |
||||
elif numel >= MB_SIZE: |
||||
return f'{numel / MB_SIZE:.1f}M' |
||||
elif numel >= KB_SIZE: |
||||
return f'{numel / KB_SIZE:.1f}K' |
||||
else: |
||||
return str(numel) |
||||
|
||||
|
||||
def set_cpu_maximum_parallelism(): |
||||
conf_str = torch.__config__.parallel_info() |
||||
inter_str = conf_str.split("hardware_concurrency() : ")[1] |
||||
max_concurrency = inter_str.split('\n')[0] |
||||
os.environ["OMP_NUM_THREADS"] = max_concurrency |
||||
print(f"environmental variable OMP_NUM_THREADS is set to {max_concurrency}.") |
||||
|
||||
|
||||
def main(): |
||||
# version check |
||||
# this example is supposed to work for versions greater than 0.2.0 |
||||
assert version.parse(CAI_VERSION) >= version.parse("0.2.0") |
||||
|
||||
set_cpu_maximum_parallelism() |
||||
args = parse_args() |
||||
|
||||
# if args.distplan not in ["colossalai", "torch_ddp", "torch_zero", "zero1", "zero2"]: |
||||
if args.distplan not in ["CAI_ZeRO1", "CAI_ZeRO2", "CAI_Gemini", "Pytorch_DDP", "Pytorch_ZeRO"]: |
||||
raise TypeError(f"{args.distplan} is error") |
||||
|
||||
# batch size per DP degree |
||||
BATCH_SIZE = args.batch_size |
||||
|
||||
NUM_STEPS = args.train_step |
||||
|
||||
WARMUP_STEPS = 1 |
||||
assert WARMUP_STEPS < NUM_STEPS, "warmup steps should smaller than the total steps" |
||||
assert (NUM_STEPS - WARMUP_STEPS) % 2 == 1, "the number of valid steps should be odd to take the median" |
||||
PROF_FLAG = False # The flag of profiling, False by default |
||||
|
||||
disable_existing_loggers() |
||||
colossalai.launch_from_torch(config={}) |
||||
|
||||
logger = get_dist_logger() |
||||
logger.info(f" {args.distplan}, batch size {BATCH_SIZE}", ranks=[0]) |
||||
|
||||
torch.manual_seed(123) |
||||
if args.distplan.startswith("CAI"): |
||||
# all param must use the same process group. |
||||
world_size = torch.distributed.get_world_size() |
||||
|
||||
# build a base-bert model |
||||
with ColoInitContext(device=get_current_device(), dtype=torch.half): |
||||
model = model_builder(args) |
||||
# model = BertForSequenceClassification(BertConfig(vocal_size = VOCAB_SIZE)) |
||||
|
||||
# asign running configurations |
||||
gemini_config = None |
||||
if args.distplan.startswith("CAI_ZeRO"): |
||||
optim_config = dict(reduce_bucket_size=12 * 1024 * 1024, overlap_communication=True, verbose=True) |
||||
elif args.distplan == "CAI_Gemini": |
||||
gemini_config = dict(strict_ddp_mode=True, |
||||
device=get_current_device(), |
||||
placement_policy=args.placement, |
||||
pin_memory=True, |
||||
hidden_dim=model.config.hidden_size, |
||||
search_range_mb=128) |
||||
optim_config = dict(gpu_margin_mem_ratio=0.) |
||||
else: |
||||
raise RuntimeError |
||||
|
||||
# build a highly optimized gpu/cpu optimizer |
||||
optimizer = HybridAdam(model.parameters(), lr=1e-3) |
||||
|
||||
if args.distplan == "CAI_ZeRO1": |
||||
zero_stage = 1 |
||||
elif args.distplan == "CAI_ZeRO2": |
||||
zero_stage = 2 |
||||
elif args.distplan == "CAI_Gemini": |
||||
zero_stage = 3 |
||||
else: |
||||
raise RuntimeError |
||||
|
||||
# wrap your model and optimizer |
||||
model = zero_model_wrapper(model, zero_stage, gemini_config) |
||||
optimizer = zero_optim_wrapper(model, optimizer, optim_config=optim_config) |
||||
|
||||
logger.info(get_mem_info(prefix='After init optim, '), ranks=[0]) |
||||
elif args.distplan.startswith("Pytorch"): |
||||
model = model_builder(args).cuda() |
||||
model = DDP(model) |
||||
if args.distplan.endswith("DDP"): |
||||
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3) |
||||
elif args.distplan.endswith("ZeRO"): |
||||
from torch.distributed.optim import ZeroRedundancyOptimizer |
||||
optimizer = ZeroRedundancyOptimizer(model.parameters(), optimizer_class=torch.optim.Adam, lr=1e-3) |
||||
else: |
||||
raise RuntimeError |
||||
|
||||
# model is shared after TP |
||||
numel = get_model_size(model) |
||||
logger.info(f"the size of testing model size is {model_size_formatter(numel)}.") |
||||
logger.info(get_mem_info(prefix='After init model, '), ranks=[0]) |
||||
|
||||
# Tflops_per_GPU = global_batch * global_numel * seq_len * 8 / #gpu |
||||
# = (batch_per_DP_group * dp_degree) * (numel * tp_degree) * seq_len * 8 / (tp_degree * dp_degree) |
||||
# = batch_per_DP_group * numel * seq_len * 8 |
||||
get_tflops_func = partial(get_tflops, numel, BATCH_SIZE, SEQ_LEN) |
||||
|
||||
torch.cuda.synchronize() |
||||
model.train() |
||||
tflops_list = [] |
||||
|
||||
def train_step(): |
||||
# we just use randomly generated data here |
||||
input_ids, labels = get_bert_data(BATCH_SIZE, |
||||
SEQ_LEN, |
||||
VOCAB_SIZE, |
||||
NUM_LABELS, |
||||
device=torch.cuda.current_device()) |
||||
optimizer.zero_grad() |
||||
|
||||
start = time() |
||||
outputs = model(input_ids, labels=labels) |
||||
loss, logits = outputs[:2] |
||||
torch.cuda.synchronize() |
||||
fwd_end = time() |
||||
fwd_time = fwd_end - start |
||||
logger.info(get_mem_info(prefix=f'[{n + 1}/{NUM_STEPS}] Forward '), ranks=[0]) |
||||
|
||||
if args.distplan.startswith("CAI"): |
||||
optimizer.backward(loss) |
||||
elif args.distplan.startswith("Pytorch"): |
||||
loss.backward() |
||||
else: |
||||
raise RuntimeError |
||||
|
||||
torch.cuda.synchronize() |
||||
bwd_end = time() |
||||
bwd_time = bwd_end - fwd_end |
||||
logger.info(get_mem_info(prefix=f'[{n + 1}/{NUM_STEPS}] Backward '), ranks=[0]) |
||||
|
||||
optimizer.step() |
||||
torch.cuda.synchronize() |
||||
optim_time = time() - bwd_end |
||||
step_time = time() - start |
||||
logger.info(get_mem_info(prefix=f'[{n + 1}/{NUM_STEPS}] Optimizer step '), ranks=[0]) |
||||
|
||||
step_tflops = get_tflops_func(step_time) |
||||
logger.info( |
||||
f"[{n + 1}/{NUM_STEPS}] Loss:{loss.item():.3f}, Step time: {step_time:.3f}s, TFLOPS: {get_tflops_func(step_time):.3f}, FWD time: {fwd_time:.3f}s, BWD time: {bwd_time:.3f}s, OPTIM time: {optim_time:.3f}s", |
||||
ranks=[0], |
||||
) |
||||
if n >= WARMUP_STEPS: |
||||
tflops_list.append(step_tflops) |
||||
|
||||
demo_profiler = get_profile_context(PROF_FLAG, |
||||
WARMUP_STEPS, |
||||
NUM_STEPS - WARMUP_STEPS, |
||||
save_dir=f"profile/{get_time_stamp()}-demo") |
||||
|
||||
with demo_profiler as prof: |
||||
for n in range(NUM_STEPS): |
||||
train_step() |
||||
prof.step() |
||||
|
||||
tflops_list.sort() |
||||
median_index = ((NUM_STEPS - WARMUP_STEPS) >> 1) + WARMUP_STEPS |
||||
logger.info(f"Median TFLOPS is {tflops_list[median_index]:.3f}") |
||||
torch.cuda.synchronize() |
||||
|
||||
|
||||
if __name__ == '__main__': |
||||
main() |
Loading…
Reference in new issue