|
|
|
from functools import partial
|
|
|
|
from typing import Any, Callable, Iterable, List, Optional, Union
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.cuda
|
|
|
|
from torch.nn import Module
|
|
|
|
from torch.utils._pytree import tree_map
|
|
|
|
|
|
|
|
from colossalai.interface import OptimizerWrapper
|
|
|
|
from colossalai.pipeline.p2p import PipelineP2PCommunication
|
|
|
|
from colossalai.pipeline.stage_manager import PipelineStageManager
|
|
|
|
from colossalai.utils.cuda import get_current_device
|
|
|
|
|
|
|
|
from ._utils import detach, get_batch_size, get_micro_batch, merge_batch, model_forward, retain_grad, to_device
|
|
|
|
from .base import PipelineSchedule
|
|
|
|
|
|
|
|
|
|
|
|
class OneForwardOneBackwardSchedule(PipelineSchedule):
|
|
|
|
|
|
|
|
def __init__(self, num_microbatches: int, stage_manager: PipelineStageManager) -> None:
|
|
|
|
super().__init__(stage_manager)
|
|
|
|
self.comm = PipelineP2PCommunication(stage_manager)
|
|
|
|
self.num_microbatches = num_microbatches
|
|
|
|
self.batch: Optional[Any] = None
|
|
|
|
self.batch_size: Optional[int] = None
|
|
|
|
self.microbatch_offset: Optional[int] = None
|
|
|
|
self.microbatch_size: Optional[int] = None
|
|
|
|
|
|
|
|
def load_batch(self, data_iter: Iterable, device: Optional[torch.device] = None) -> None:
|
|
|
|
"""Load a batch from data iterator.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
data_iter (Iterable): Data iterator.
|
|
|
|
device (Optional[torch.device], optional): Target device. Defaults to None.
|
|
|
|
"""
|
|
|
|
batch = next(data_iter)
|
|
|
|
if device is not None:
|
|
|
|
batch = tree_map(partial(to_device, device=device), batch)
|
|
|
|
self.batch = batch
|
|
|
|
self.batch_size = get_batch_size(batch)
|
|
|
|
self.microbatch_offset = 0
|
|
|
|
assert self.batch_size % self.num_microbatches == 0, \
|
|
|
|
"Batch size should divided by the number of microbatches"
|
|
|
|
self.microbatch_size = self.batch_size // self.num_microbatches
|
|
|
|
|
|
|
|
def load_micro_batch(self) -> Any:
|
|
|
|
"""Load a micro batch from the current batch.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Any: Micro batch.
|
|
|
|
"""
|
|
|
|
micro_batch = get_micro_batch(self.batch, self.microbatch_offset, self.microbatch_size)
|
|
|
|
self.microbatch_offset += self.microbatch_size
|
|
|
|
return tree_map(partial(to_device, device=get_current_device()), micro_batch)
|
|
|
|
|
|
|
|
def forward_step(self,
|
|
|
|
model: Module,
|
|
|
|
input_obj: Optional[dict],
|
|
|
|
criterion: Callable,
|
|
|
|
accum_loss: Optional[torch.Tensor] = None,
|
|
|
|
outputs: Optional[List[Any]] = None) -> Union[torch.Tensor, dict]:
|
|
|
|
"""Forward one step of the pipeline
|
|
|
|
|
|
|
|
Args:
|
|
|
|
model (Module): Model to be run
|
|
|
|
input_obj (Optional[dict]): The output from the previous stage. If it is the first stage, the `input_obj` is None.
|
|
|
|
criterion (Callable): Criterion to calculate loss.
|
|
|
|
accum_loss (Optional[torch.Tensor], optional): Accumulated loss. Defaults to None.
|
|
|
|
outputs (Optional[List[Any]], optional): List to store the output of the last stage (final output). Defaults to None.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Union[torch.Tensor, dict]: The intermediate output (dict) of the current stage. If it is the last stage, the output is the loss (Tensor).
|
|
|
|
"""
|
|
|
|
micro_batch = self.load_micro_batch()
|
|
|
|
|
|
|
|
# for the first stage, input_obj is None
|
|
|
|
# for the non-first stage, input_obj is the output of the previous stage and it's must be a dict
|
|
|
|
output_obj = model_forward(model, micro_batch, input_obj)
|
|
|
|
if self.stage_manager.is_last_stage():
|
|
|
|
loss = criterion(output_obj, micro_batch) / self.num_microbatches
|
|
|
|
if accum_loss is not None:
|
|
|
|
accum_loss.add_(loss.detach())
|
|
|
|
if outputs is not None:
|
|
|
|
outputs.append(tree_map(detach, output_obj))
|
|
|
|
return loss
|
|
|
|
else:
|
|
|
|
return output_obj
|
|
|
|
|
|
|
|
def backward_step(self, optimizer: OptimizerWrapper, input_obj: Optional[dict],
|
|
|
|
output_obj: Union[dict, torch.Tensor], output_obj_grad: Optional[dict]) -> Optional[dict]:
|
|
|
|
"""Backward one step of the pipeline
|
|
|
|
|
|
|
|
Args:
|
|
|
|
optimizer (OptimizerWrapper): Optimizer to update the model
|
|
|
|
input_obj (Optional[dict]): Output of the previous stage. If it is the first stage, the `input_obj` is None.
|
|
|
|
output_obj (Union[dict, torch.Tensor]): Output of the current stage. If it is the last stage, the output is the loss (Tensor).
|
|
|
|
output_obj_grad (dict): Gradient of the `output_obj`. If it is the last stage, the `output_obj_grad` is None.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Optional[dict]: Gradient of the `input_obj`. If it is the first stage, the `input_obj_grad` is None.
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Retain the grad on the input_obj.
|
|
|
|
tree_map(retain_grad, input_obj)
|
|
|
|
|
|
|
|
# Backward pass.
|
|
|
|
if output_obj_grad is None:
|
|
|
|
optimizer.backward(output_obj)
|
|
|
|
else:
|
|
|
|
if "backward_tensor_keys" not in output_obj:
|
|
|
|
for k, grad in output_obj_grad.items():
|
|
|
|
optimizer.backward_by_grad(output_obj[k], grad)
|
|
|
|
else:
|
|
|
|
for k, grad in output_obj_grad.items():
|
|
|
|
output_obj[k].grad = grad
|
|
|
|
for k in output_obj["backward_tensor_keys"]:
|
|
|
|
tensor_to_backward = output_obj[k]
|
|
|
|
optimizer.backward_by_grad(tensor_to_backward, tensor_to_backward.grad)
|
|
|
|
|
|
|
|
# Collect the grad of the input_obj.
|
|
|
|
input_obj_grad = None
|
|
|
|
if input_obj is not None:
|
|
|
|
input_obj_grad = {}
|
|
|
|
for k, v in input_obj.items():
|
|
|
|
if isinstance(v, torch.Tensor) and v.grad is not None:
|
|
|
|
input_obj_grad[k] = v.grad
|
|
|
|
return input_obj_grad
|
|
|
|
|
|
|
|
def forward_backward_step(self,
|
|
|
|
model: Module,
|
|
|
|
optimizer: OptimizerWrapper,
|
|
|
|
data_iter: Iterable,
|
|
|
|
criterion: Callable[..., Any],
|
|
|
|
return_loss: bool = False,
|
|
|
|
return_outputs: bool = False) -> dict:
|
|
|
|
"""Runs non-interleaved 1F1B schedule, with communication between pipeline stages.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
model (Module): Model to be trained.
|
|
|
|
optimizer (OptimizerWrapper): Optimizer to be used.
|
|
|
|
data_iter (Iterable): Data iterator.
|
|
|
|
criterion (Callable[[Any, Any], Tensor]): Criterion to be used. It should take two arguments: model outputs and inputs, and returns loss tensor.
|
|
|
|
return_loss (bool, optional): Whether to return loss. Defaults to False. Whether to return loss.
|
|
|
|
return_outputs (bool, optional): Whether to return model outputs. Defaults to False. Whether to return model outputs.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
dict: A dict with keys: 'loss' and 'outputs'.
|
|
|
|
"""
|
|
|
|
forward_only = not torch.is_grad_enabled()
|
|
|
|
|
|
|
|
self.load_batch(data_iter)
|
|
|
|
|
|
|
|
# num_warmup_microbatches is the step when not all the processes are working
|
|
|
|
num_warmup_microbatches = self.stage_manager.num_stages - self.stage_manager.stage - 1
|
|
|
|
num_warmup_microbatches = min(num_warmup_microbatches, self.num_microbatches)
|
|
|
|
num_microbatches_remaining = self.num_microbatches - num_warmup_microbatches
|
|
|
|
|
|
|
|
# Input, output tensors only need to be saved when doing backward passes
|
|
|
|
input_objs = None
|
|
|
|
output_objs = None
|
|
|
|
|
|
|
|
if not forward_only:
|
|
|
|
input_objs = []
|
|
|
|
output_objs = []
|
|
|
|
|
|
|
|
outputs = [] if return_outputs and self.stage_manager.is_last_stage() else None
|
|
|
|
if return_loss and self.stage_manager.is_last_stage():
|
|
|
|
accum_loss = torch.zeros(1, device=get_current_device())
|
|
|
|
else:
|
|
|
|
accum_loss = None
|
|
|
|
|
|
|
|
# Run warmup forward passes.
|
|
|
|
for i in range(num_warmup_microbatches):
|
|
|
|
input_obj = self.comm.recv_forward()
|
|
|
|
|
|
|
|
output_obj = self.forward_step(model, input_obj, criterion, accum_loss, outputs)
|
|
|
|
|
|
|
|
self.comm.send_forward(output_obj)
|
|
|
|
|
|
|
|
if not forward_only:
|
|
|
|
input_objs.append(input_obj)
|
|
|
|
output_objs.append(output_obj)
|
|
|
|
|
|
|
|
# Before running 1F1B, need to receive first forward tensor.
|
|
|
|
# If all microbatches are run in warmup / cooldown phase, then no need to
|
|
|
|
# receive this tensor here.
|
|
|
|
if num_microbatches_remaining > 0:
|
|
|
|
input_obj = self.comm.recv_forward()
|
|
|
|
|
|
|
|
# Run 1F1B in steady state.
|
|
|
|
for i in range(num_microbatches_remaining):
|
|
|
|
last_iteration = (i == (num_microbatches_remaining - 1))
|
|
|
|
|
|
|
|
output_obj = self.forward_step(model, input_obj, criterion, accum_loss, outputs)
|
|
|
|
if forward_only:
|
|
|
|
self.comm.send_forward(output_obj)
|
|
|
|
|
|
|
|
if not last_iteration:
|
|
|
|
input_obj = self.comm.recv_forward()
|
|
|
|
|
|
|
|
else:
|
|
|
|
# TODO adjust here
|
|
|
|
self.comm.send_forward(output_obj)
|
|
|
|
output_obj_grad = self.comm.recv_backward()
|
|
|
|
|
|
|
|
# Add input_obj and output_obj to end of list.
|
|
|
|
input_objs.append(input_obj)
|
|
|
|
output_objs.append(output_obj)
|
|
|
|
|
|
|
|
# Pop output_obj and output_obj from the start of the list for
|
|
|
|
# the backward pass.
|
|
|
|
input_obj = input_objs.pop(0)
|
|
|
|
output_obj = output_objs.pop(0)
|
|
|
|
input_obj_grad = self.backward_step(optimizer, input_obj, output_obj, output_obj_grad)
|
|
|
|
|
|
|
|
if last_iteration:
|
|
|
|
input_obj = None
|
|
|
|
else:
|
|
|
|
input_obj = self.comm.recv_forward()
|
|
|
|
self.comm.send_backward(input_obj_grad)
|
|
|
|
|
|
|
|
# Run cooldown backward passes.
|
|
|
|
if not forward_only:
|
|
|
|
for i in range(num_warmup_microbatches):
|
|
|
|
input_obj = input_objs.pop(0)
|
|
|
|
output_obj = output_objs.pop(0)
|
|
|
|
|
|
|
|
output_obj_grad = self.comm.recv_backward()
|
|
|
|
input_obj_grad = self.backward_step(optimizer, input_obj, output_obj, output_obj_grad)
|
|
|
|
self.comm.send_backward(input_obj_grad)
|
|
|
|
|
|
|
|
if outputs is not None:
|
|
|
|
outputs = merge_batch(outputs)
|
|
|
|
return {'loss': accum_loss, 'outputs': outputs}
|