You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/README-zh-Hans.md

287 lines
9.0 KiB

# Colossal-AI
<div id="top" align="center">
[![logo](https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/Colossal-AI_logo.png)](https://www.colossalai.org/)
3 years ago
一个整合高效并行技术的 AI 大模型训练系统。
<h3> <a href="https://arxiv.org/abs/2110.14883"> 论文 </a> |
<a href="https://www.colossalai.org/"> 文档 </a> |
<a href="https://github.com/hpcaitech/ColossalAI-Examples"> 例程 </a> |
<a href="https://github.com/hpcaitech/ColossalAI/discussions"> 论坛 </a> |
<a href="https://medium.com/@hpcaitech"> 博客 </a></h3>
[![Build](https://github.com/hpcaitech/ColossalAI/actions/workflows/build.yml/badge.svg)](https://github.com/hpcaitech/ColossalAI/actions/workflows/build.yml)
[![Documentation](https://readthedocs.org/projects/colossalai/badge/?version=latest)](https://colossalai.readthedocs.io/en/latest/?badge=latest)
[![CodeFactor](https://www.codefactor.io/repository/github/hpcaitech/colossalai/badge)](https://www.codefactor.io/repository/github/hpcaitech/colossalai)
[![HuggingFace badge](https://img.shields.io/badge/%F0%9F%A4%97HuggingFace-Join-yellow)](https://huggingface.co/hpcai-tech)
[![slack badge](https://img.shields.io/badge/Slack-join-blueviolet?logo=slack&amp)](https://join.slack.com/t/colossalaiworkspace/shared_invite/zt-z7b26eeb-CBp7jouvu~r0~lcFzX832w)
[![WeChat badge](https://img.shields.io/badge/微信-加入-green?logo=wechat&amp)](https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/WeChat.png)
| [English](README.md) | [中文](README-zh-Hans.md) |
</div>
## 目录
<ul>
3 years ago
<li><a href="#为何选择-Colossal-AI">为何选择 Colossal-AI</a> </li>
<li><a href="#特点">特点</a> </li>
<li>
<a href="#展示样例">展示样例</a>
<ul>
<li><a href="#ViT">ViT</a></li>
<li><a href="#GPT-3">GPT-3</a></li>
<li><a href="#GPT-2">GPT-2</a></li>
<li><a href="#BERT">BERT</a></li>
<li><a href="#PaLM">PaLM</a></li>
</ul>
</li>
<li>
<a href="#安装">安装</a>
<ul>
<li><a href="#PyPI">PyPI</a></li>
<li><a href="#从源代码安装">从源代码安装</a></li>
</ul>
</li>
<li><a href="#使用-Docker">使用 Docker</a></li>
<li><a href="#社区">社区</a></li>
<li><a href="#做出贡献">做出贡献</a></li>
<li><a href="#快速预览">快速预览</a></li>
<ul>
<li><a href="#几行代码开启分布式训练">几行代码开启分布式训练</a></li>
<li><a href="#构建一个简单的2维并行模型">构建一个简单的2维并行模型</a></li>
</ul>
<li><a href="#引用我们">引用我们</a></li>
</ul>
3 years ago
## 为何选择 Colossal-AI
<div align="center">
<a href="https://youtu.be/KnXSfjqkKN0">
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/JamesDemmel_Colossal-AI.png" width="600" />
</a>
James Demmel 教授 (加州大学伯克利分校): Colossal-AI 让分布式训练高效、易用、可扩展。
</div>
<p align="right">(<a href="#top">返回顶端</a>)</p>
## 特点
3 years ago
Colossal-AI 为您提供了一系列并行训练组件。我们的目标是让您的分布式 AI 模型训练像普通的单 GPU 模型一样简单。我们提供的友好工具可以让您在几行代码内快速开始分布式训练。
- 数据并行
- 流水线并行
- 1维, 2维, 2.5维, 3维张量并行
- 序列并行
3 years ago
- 友好的 trainer 和 engine
- 可扩展新的并行方式
- 混合精度
- 零冗余优化器 (ZeRO)
<p align="right">(<a href="#top">返回顶端</a>)</p>
## 展示样例
### ViT
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/ViT.png" width="450" />
- 14倍批大小和5倍训练速度张量并行=64
### GPT-3
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/GPT3.png" width=700/>
- 释放 50% GPU 资源占用, 或 10.7% 加速
### GPT-2
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/GPT2.png" width=800/>
3 years ago
- 降低11倍 GPU 显存占用,或超线性扩展(张量并行)
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/(updated)GPT-2.png" width=800>
- 用相同的硬件条件训练24倍大的模型
- 超3倍的吞吐量
### BERT
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/BERT.png" width=800/>
- 2倍训练速度或1.5倍序列长度
### PaLM
- [PaLM-colossalai](https://github.com/hpcaitech/PaLM-colossalai): 可扩展的谷歌 Pathways Language Model ([PaLM](https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html)) 实现。
请访问我们的[文档和教程](https://www.colossalai.org/)以了解详情。
<p align="right">(<a href="#top">返回顶端</a>)</p>
## 安装
### PyPI
```bash
pip install colossalai
```
3 years ago
该命令将会安装 CUDA extension, 如果你已安装 CUDA, NVCC 和 torch。
3 years ago
如果你不想安装 CUDA extension, 可在命令中添加`--global-option="--no_cuda_ext"`, 例如:
```bash
pip install colossalai --global-option="--no_cuda_ext"
```
3 years ago
如果你想使用 `ZeRO`, 你可以使用:
```bash
pip install colossalai[zero]
```
### 从源代码安装
3 years ago
> Colossal-AI 的版本将与该项目的主分支保持一致。欢迎通过 issue 反馈你遇到的任何问题 :)
```shell
git clone https://github.com/hpcaitech/ColossalAI.git
cd ColossalAI
# 安装依赖
pip install -r requirements/requirements.txt
# 安装 colossalai
pip install .
```
3 years ago
如果你不想安装和使用 CUDA kernel fusion (使用 fused 优化器需安装):
```shell
pip install --global-option="--no_cuda_ext" .
```
<p align="right">(<a href="#top">返回顶端</a>)</p>
## 使用 Docker
3 years ago
运行以下命令从我们提供的 docker 文件中建立 docker 镜像。
```bash
cd ColossalAI
docker build -t colossalai ./docker
```
3 years ago
运行以下命令从以交互式启动 docker 镜像.
```bash
docker run -ti --gpus all --rm --ipc=host colossalai bash
```
<p align="right">(<a href="#top">返回顶端</a>)</p>
## 社区
欢迎通过[论坛](https://github.com/hpcaitech/ColossalAI/discussions),
[Slack](https://join.slack.com/t/colossalaiworkspace/shared_invite/zt-z7b26eeb-CBp7jouvu~r0~lcFzX832w),
3 years ago
或[微信](https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/WeChat.png "qrcode")加入 Colossal-AI 社区,与我们分享你的建议和问题。
## 做出贡献
欢迎为该项目做出贡献,请参阅[贡献指南](./CONTRIBUTING.md)。
真诚感谢所有贡献者!
<a href="https://github.com/hpcaitech/ColossalAI/graphs/contributors"><img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/contributor_avatar.png" width="800px"></a>
*贡献者头像的展示顺序是随机的。*
<p align="right">(<a href="#top">返回顶端</a>)</p>
## 快速预览
### 几行代码开启分布式训练
```python
import colossalai
from colossalai.utils import get_dataloader
3 years ago
# my_config 可以是 config 文件的路径或字典对象
# 'localhost' 仅适用于单节点,在多节点时需指明节点名
colossalai.launch(
config=my_config,
rank=rank,
world_size=world_size,
backend='nccl',
port=29500,
host='localhost'
)
# 构建模型
model = ...
3 years ago
# 构建数据集, dataloader 会默认处理分布式数据 sampler
train_dataset = ...
train_dataloader = get_dataloader(dataset=dataset,
shuffle=True
)
# 构建优化器
optimizer = ...
# 构建损失函数
criterion = ...
3 years ago
# 初始化 colossalai
engine, train_dataloader, _, _ = colossalai.initialize(
model=model,
optimizer=optimizer,
criterion=criterion,
train_dataloader=train_dataloader
)
# 开始训练
engine.train()
for epoch in range(NUM_EPOCHS):
for data, label in train_dataloader:
engine.zero_grad()
output = engine(data)
loss = engine.criterion(output, label)
engine.backward(loss)
engine.step()
```
### 构建一个简单的2维并行模型
3 years ago
假设我们有一个非常巨大的 MLP 模型,它巨大的 hidden size 使得它难以被单个 GPU 容纳。我们可以将该模型的权重以二维网格的形式分配到多个 GPU 上,且保持你熟悉的模型构建方式。
```python
from colossalai.nn import Linear2D
import torch.nn as nn
class MLP_2D(nn.Module):
def __init__(self):
super().__init__()
self.linear_1 = Linear2D(in_features=1024, out_features=16384)
self.linear_2 = Linear2D(in_features=16384, out_features=1024)
def forward(self, x):
x = self.linear_1(x)
x = self.linear_2(x)
return x
```
<p align="right">(<a href="#top">返回顶端</a>)</p>
## 引用我们
```
@article{bian2021colossal,
title={Colossal-AI: A Unified Deep Learning System For Large-Scale Parallel Training},
author={Bian, Zhengda and Liu, Hongxin and Wang, Boxiang and Huang, Haichen and Li, Yongbin and Wang, Chuanrui and Cui, Fan and You, Yang},
journal={arXiv preprint arXiv:2110.14883},
year={2021}
}
```
<p align="right">(<a href="#top">返回顶端</a>)</p>