2021-12-21 04:19:52 +00:00
|
|
|
"""This code is from NVIDIA apex:
|
|
|
|
https://github.com/NVIDIA/apex
|
|
|
|
with some changes. """
|
|
|
|
|
|
|
|
import numbers
|
2022-11-17 05:42:33 +00:00
|
|
|
|
2021-12-21 04:19:52 +00:00
|
|
|
import torch
|
2022-11-17 05:42:33 +00:00
|
|
|
from torch.cuda.amp import custom_bwd, custom_fwd
|
2021-12-21 04:19:52 +00:00
|
|
|
from torch.nn import init
|
2022-11-17 05:42:33 +00:00
|
|
|
from torch.nn.parameter import Parameter
|
2021-12-21 04:19:52 +00:00
|
|
|
|
2023-02-03 01:47:13 +00:00
|
|
|
from colossalai.kernel.op_builder.layernorm import LayerNormBuilder
|
|
|
|
|
|
|
|
try:
|
|
|
|
from colossalai._C import layer_norm
|
|
|
|
except ImportError:
|
|
|
|
layer_norm = None
|
|
|
|
|
2021-12-21 04:19:52 +00:00
|
|
|
|
|
|
|
class FusedLayerNormAffineFunction(torch.autograd.Function):
|
|
|
|
@staticmethod
|
2022-01-20 05:44:51 +00:00
|
|
|
@custom_fwd(cast_inputs=torch.float32)
|
2021-12-21 04:19:52 +00:00
|
|
|
def forward(ctx, input, weight, bias, normalized_shape, eps):
|
|
|
|
ctx.normalized_shape = normalized_shape
|
|
|
|
ctx.eps = eps
|
|
|
|
input_ = input.contiguous()
|
|
|
|
weight_ = weight.contiguous()
|
|
|
|
bias_ = bias.contiguous()
|
2023-02-03 01:47:13 +00:00
|
|
|
|
|
|
|
global layer_norm
|
|
|
|
if layer_norm is None:
|
|
|
|
layer_norm = LayerNormBuilder().load()
|
2023-01-07 10:23:02 +00:00
|
|
|
output, mean, invvar = layer_norm.forward_affine(input_, ctx.normalized_shape, weight_, bias_, ctx.eps)
|
2023-02-03 01:47:13 +00:00
|
|
|
ctx.layernorm_op = layer_norm
|
2021-12-21 04:19:52 +00:00
|
|
|
ctx.save_for_backward(input_, weight_, bias_, mean, invvar)
|
|
|
|
|
|
|
|
return output
|
|
|
|
|
|
|
|
@staticmethod
|
2022-01-20 05:44:51 +00:00
|
|
|
@custom_bwd
|
2021-12-21 04:19:52 +00:00
|
|
|
def backward(ctx, grad_output):
|
|
|
|
input_, weight_, bias_, mean, invvar = ctx.saved_tensors
|
|
|
|
grad_input = grad_weight = grad_bias = None
|
2023-09-19 06:20:26 +00:00
|
|
|
grad_input, grad_weight, grad_bias = layer_norm.backward_affine(
|
|
|
|
grad_output.contiguous(), mean, invvar, input_, ctx.normalized_shape, weight_, bias_, ctx.eps
|
|
|
|
)
|
2021-12-21 04:19:52 +00:00
|
|
|
|
|
|
|
return grad_input, grad_weight, grad_bias, None, None
|
|
|
|
|
|
|
|
|
|
|
|
class MixedFusedLayerNorm(torch.nn.Module):
|
2022-02-14 03:15:02 +00:00
|
|
|
def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None):
|
2021-12-21 04:19:52 +00:00
|
|
|
super(MixedFusedLayerNorm, self).__init__()
|
|
|
|
|
|
|
|
if isinstance(normalized_shape, numbers.Integral):
|
|
|
|
normalized_shape = (normalized_shape,)
|
|
|
|
self.normalized_shape = torch.Size(normalized_shape)
|
|
|
|
self.eps = eps
|
2022-02-14 03:15:02 +00:00
|
|
|
self.weight = Parameter(torch.empty(*normalized_shape, device=device, dtype=dtype))
|
|
|
|
self.bias = Parameter(torch.empty(*normalized_shape, device=device, dtype=dtype))
|
2021-12-21 04:19:52 +00:00
|
|
|
self.reset_parameters()
|
|
|
|
|
|
|
|
def reset_parameters(self):
|
|
|
|
init.ones_(self.weight)
|
|
|
|
init.zeros_(self.bias)
|
|
|
|
|
|
|
|
def forward(self, input):
|
2022-05-16 06:43:32 +00:00
|
|
|
return FusedLayerNormAffineFunction.apply(input, self.weight, self.bias, self.normalized_shape, self.eps)
|
2022-01-20 05:44:51 +00:00
|
|
|
|
|
|
|
def __repr__(self):
|
2023-09-19 06:20:26 +00:00
|
|
|
return f"MixedFusedLayerNorm(normalized_shape={self.normalized_shape}, eps={self.eps})"
|