mirror of https://github.com/hpcaitech/ColossalAI
[hotfix] issue #2388
parent
4e96039649
commit
69d9180c4b
|
@ -16,17 +16,17 @@ class FusedLayerNormAffineFunction(torch.autograd.Function):
|
|||
@custom_fwd(cast_inputs=torch.float32)
|
||||
def forward(ctx, input, weight, bias, normalized_shape, eps):
|
||||
try:
|
||||
import colossalai._C.layer_norm
|
||||
from colossalai._C import layer_norm
|
||||
except ImportError:
|
||||
raise RuntimeError('FusedLayerNormAffineFunction requires cuda extensions')
|
||||
from colossalai.kernel.op_builder.layernorm import LayerNormBuilder
|
||||
layer_norm = LayerNormBuilder().load()
|
||||
|
||||
ctx.normalized_shape = normalized_shape
|
||||
ctx.eps = eps
|
||||
input_ = input.contiguous()
|
||||
weight_ = weight.contiguous()
|
||||
bias_ = bias.contiguous()
|
||||
output, mean, invvar = colossalai._C.layer_norm.forward_affine(input_, ctx.normalized_shape, weight_, bias_,
|
||||
ctx.eps)
|
||||
output, mean, invvar = layer_norm.forward_affine(input_, ctx.normalized_shape, weight_, bias_, ctx.eps)
|
||||
ctx.save_for_backward(input_, weight_, bias_, mean, invvar)
|
||||
|
||||
return output
|
||||
|
@ -35,14 +35,15 @@ class FusedLayerNormAffineFunction(torch.autograd.Function):
|
|||
@custom_bwd
|
||||
def backward(ctx, grad_output):
|
||||
try:
|
||||
import colossalai._C.layer_norm
|
||||
from colossalai._C import layer_norm
|
||||
except ImportError:
|
||||
raise RuntimeError('FusedLayerNormAffineFunction requires cuda extensions')
|
||||
from colossalai.kernel.op_builder.layernorm import LayerNormBuilder
|
||||
layer_norm = LayerNormBuilder().load()
|
||||
|
||||
input_, weight_, bias_, mean, invvar = ctx.saved_tensors
|
||||
grad_input = grad_weight = grad_bias = None
|
||||
grad_input, grad_weight, grad_bias \
|
||||
= colossalai._C.layer_norm.backward_affine(
|
||||
= layer_norm.backward_affine(
|
||||
grad_output.contiguous(), mean, invvar,
|
||||
input_, ctx.normalized_shape,
|
||||
weight_, bias_, ctx.eps)
|
||||
|
|
|
@ -53,26 +53,28 @@ class ScaledMaskedSoftmax(torch.autograd.Function):
|
|||
@staticmethod
|
||||
def forward(ctx, inputs, mask, scale):
|
||||
try:
|
||||
import colossalai._C.scaled_masked_softmax
|
||||
from colossalai._C import scaled_masked_softmax
|
||||
except ImportError:
|
||||
raise RuntimeError('ScaledMaskedSoftmax requires cuda extensions')
|
||||
from colossalai.kernel.op_builder.scaled_masked_softmax import ScaledMaskedSoftmaxBuilder
|
||||
scaled_masked_softmax = ScaledMaskedSoftmaxBuilder().load()
|
||||
|
||||
scale_t = torch.tensor([scale])
|
||||
|
||||
softmax_results = colossalai._C.scaled_masked_softmax.forward(inputs, mask, scale_t[0])
|
||||
softmax_results = scaled_masked_softmax.forward(inputs, mask, scale_t[0])
|
||||
ctx.save_for_backward(softmax_results, scale_t)
|
||||
return softmax_results
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, output_grads):
|
||||
try:
|
||||
import colossalai._C.scaled_masked_softmax
|
||||
from colossalai._C import scaled_masked_softmax
|
||||
except ImportError:
|
||||
raise RuntimeError('ScaledMaskedSoftmax requires cuda extensions')
|
||||
from colossalai.kernel.op_builder.scaled_masked_softmax import ScaledMaskedSoftmaxBuilder
|
||||
scaled_masked_softmax = ScaledMaskedSoftmaxBuilder().load()
|
||||
|
||||
softmax_results, scale_t = ctx.saved_tensors
|
||||
|
||||
input_grads = colossalai._C.scaled_masked_softmax.backward(output_grads, softmax_results, scale_t[0])
|
||||
input_grads = scaled_masked_softmax.backward(output_grads, softmax_results, scale_t[0])
|
||||
return input_grads, None, None
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue