- [Maximizing Parallelism in Distributed Training for Huge Neural Networks](https://arxiv.org/pdf/2105.14450.pdf)
## Introduction
The [3D tensor parallelism](https://arxiv.org/pdf/2105.14450.pdf) is an approach to parallelize the computation of neural models, hoping to obtain the optimal communication cost.
Let's still take a linear layer $Y = XA$ as an example.
Given $P=q \times q \times q$ processors (necessary condition), e.g. $q=2$, we split the input $X$ and weight $A$ into
Then we all-gather $X_{ijl}$ across $(i, 0...q,l)$, as well as $A_{lji}$ across $(0...q, j, l)$.
So, we have $X_{il}$ and $A_{lj}$ on each processor $(i,j,l)$ to get $X_{il}A_{lj}$.
Finally, we reduce-scatter the results across $(i, j, 0...q)$ to get $Y_{ijl}$, which forms
$$
Y=
\left[\begin{matrix}
Y_{000} & Y_{001} \\
Y_{010} & Y_{011} \\
Y_{100} & Y_{101} \\
Y_{110} & Y_{111} \end{matrix}
\right].
$$
We also need to note that in the backward pass, we need to all-gather the gradient $\dot{Y_{ijl}}$, and then reduce-scatter the gradient $\dot{X_{il}}=\dot{Y_{ij}}A_{lj}^T$ and $\dot{A_{lj}}=X_{il}^T\dot{Y_{ij}}$.
## Efficiency
Given $P=q \times q \times q$ processors, we present the theoretical computation and memory cost, as well as the communication cost based on the ring algorithm in both the forward and backward pass of 3D tensor parallelism.
| Computation | Memory (parameters) | Memory (activations) | Communication (bandwidth) | Communication (latency) |
Currently the newest version of ColossalAI doesn't support 3D tensor parallelism, but this feature will be integrated into `Shardformer` in future releases.
For more details about ideas and usages of `Shardformer`, please refer to [Shardformer Doc](./shardformer.md).
For users of older version of ColossalAI, please refer to [ColossalAI-Examples - 3D Tensor Parallelism](https://github.com/hpcaitech/ColossalAI-Examples/blob/main/features/tensor_parallel/README.md).