from functools import partial
import torch
from torch.nn import LayerNorm
from colossalai.shardformer.policies.bloom import BloomForCausalLMPolicy
from ..modeling.bloom import BloomInferenceForwards
try:
from colossalai.kernel.triton import layer_norm
HAS_TRITON_NORM = True
except:
print("Some of our kernels require triton. You might want to install triton from https://github.com/openai/triton")
HAS_TRITON_NORM = False
def get_triton_layernorm_forward():
if HAS_TRITON_NORM:
def _triton_layernorm_forward(self: LayerNorm, hidden_states: torch.Tensor):
return layer_norm(hidden_states, self.weight.data, self.bias, self.eps)
return _triton_layernorm_forward
else:
return None
class BloomModelInferPolicy(BloomForCausalLMPolicy):
def __init__(self) -> None:
super().__init__()
def module_policy(self):
from transformers.models.bloom.modeling_bloom import BloomAttention, BloomBlock, BloomForCausalLM, BloomModel
policy = super().module_policy()
# NOTE set inference mode to shard config
self.shard_config._infer()
method_replacement = {
"forward": BloomInferenceForwards.bloom_for_causal_lm_forward,
"prepare_inputs_for_generation": BloomInferenceForwards.bloom_for_causal_lm_prepare_inputs_for_generation,
}
self.append_or_create_method_replacement(
description=method_replacement, policy=policy, target_key=BloomForCausalLM
)
method_replacement = {"forward": BloomInferenceForwards.bloom_model_forward}
self.append_or_create_method_replacement(description=method_replacement, policy=policy, target_key=BloomModel)
method_replacement = {"forward": BloomInferenceForwards.bloom_block_forward}
self.append_or_create_method_replacement(description=method_replacement, policy=policy, target_key=BloomBlock)
method_replacement = {"forward": BloomInferenceForwards.bloom_attention_forward}
description=method_replacement, policy=policy, target_key=BloomAttention
infer_method = get_triton_layernorm_forward()
method_replacement = {"forward": partial(infer_method)}
description=method_replacement, policy=policy, target_key=LayerNorm
return policy