mirror of https://github.com/hpcaitech/ColossalAI
184 lines
6.4 KiB
Python
184 lines
6.4 KiB
Python
|
from typing import Dict
|
||
|
import numpy as np
|
||
|
from omegaconf import DictConfig, ListConfig
|
||
|
import torch
|
||
|
from torch.utils.data import Dataset
|
||
|
from pathlib import Path
|
||
|
import json
|
||
|
from PIL import Image
|
||
|
from torchvision import transforms
|
||
|
from einops import rearrange
|
||
|
from ldm.util import instantiate_from_config
|
||
|
from datasets import load_dataset
|
||
|
|
||
|
def make_multi_folder_data(paths, caption_files=None, **kwargs):
|
||
|
"""Make a concat dataset from multiple folders
|
||
|
Don't suport captions yet
|
||
|
If paths is a list, that's ok, if it's a Dict interpret it as:
|
||
|
k=folder v=n_times to repeat that
|
||
|
"""
|
||
|
list_of_paths = []
|
||
|
if isinstance(paths, (Dict, DictConfig)):
|
||
|
assert caption_files is None, \
|
||
|
"Caption files not yet supported for repeats"
|
||
|
for folder_path, repeats in paths.items():
|
||
|
list_of_paths.extend([folder_path]*repeats)
|
||
|
paths = list_of_paths
|
||
|
|
||
|
if caption_files is not None:
|
||
|
datasets = [FolderData(p, caption_file=c, **kwargs) for (p, c) in zip(paths, caption_files)]
|
||
|
else:
|
||
|
datasets = [FolderData(p, **kwargs) for p in paths]
|
||
|
return torch.utils.data.ConcatDataset(datasets)
|
||
|
|
||
|
class FolderData(Dataset):
|
||
|
def __init__(self,
|
||
|
root_dir,
|
||
|
caption_file=None,
|
||
|
image_transforms=[],
|
||
|
ext="jpg",
|
||
|
default_caption="",
|
||
|
postprocess=None,
|
||
|
return_paths=False,
|
||
|
) -> None:
|
||
|
"""Create a dataset from a folder of images.
|
||
|
If you pass in a root directory it will be searched for images
|
||
|
ending in ext (ext can be a list)
|
||
|
"""
|
||
|
self.root_dir = Path(root_dir)
|
||
|
self.default_caption = default_caption
|
||
|
self.return_paths = return_paths
|
||
|
if isinstance(postprocess, DictConfig):
|
||
|
postprocess = instantiate_from_config(postprocess)
|
||
|
self.postprocess = postprocess
|
||
|
if caption_file is not None:
|
||
|
with open(caption_file, "rt") as f:
|
||
|
ext = Path(caption_file).suffix.lower()
|
||
|
if ext == ".json":
|
||
|
captions = json.load(f)
|
||
|
elif ext == ".jsonl":
|
||
|
lines = f.readlines()
|
||
|
lines = [json.loads(x) for x in lines]
|
||
|
captions = {x["file_name"]: x["text"].strip("\n") for x in lines}
|
||
|
else:
|
||
|
raise ValueError(f"Unrecognised format: {ext}")
|
||
|
self.captions = captions
|
||
|
else:
|
||
|
self.captions = None
|
||
|
|
||
|
if not isinstance(ext, (tuple, list, ListConfig)):
|
||
|
ext = [ext]
|
||
|
|
||
|
# Only used if there is no caption file
|
||
|
self.paths = []
|
||
|
for e in ext:
|
||
|
self.paths.extend(list(self.root_dir.rglob(f"*.{e}")))
|
||
|
if isinstance(image_transforms, ListConfig):
|
||
|
image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
|
||
|
image_transforms.extend([transforms.ToTensor(),
|
||
|
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
|
||
|
image_transforms = transforms.Compose(image_transforms)
|
||
|
self.tform = image_transforms
|
||
|
|
||
|
|
||
|
def __len__(self):
|
||
|
if self.captions is not None:
|
||
|
return len(self.captions.keys())
|
||
|
else:
|
||
|
return len(self.paths)
|
||
|
|
||
|
def __getitem__(self, index):
|
||
|
data = {}
|
||
|
if self.captions is not None:
|
||
|
chosen = list(self.captions.keys())[index]
|
||
|
caption = self.captions.get(chosen, None)
|
||
|
if caption is None:
|
||
|
caption = self.default_caption
|
||
|
filename = self.root_dir/chosen
|
||
|
else:
|
||
|
filename = self.paths[index]
|
||
|
|
||
|
if self.return_paths:
|
||
|
data["path"] = str(filename)
|
||
|
|
||
|
im = Image.open(filename)
|
||
|
im = self.process_im(im)
|
||
|
data["image"] = im
|
||
|
|
||
|
if self.captions is not None:
|
||
|
data["txt"] = caption
|
||
|
else:
|
||
|
data["txt"] = self.default_caption
|
||
|
|
||
|
if self.postprocess is not None:
|
||
|
data = self.postprocess(data)
|
||
|
|
||
|
return data
|
||
|
|
||
|
def process_im(self, im):
|
||
|
im = im.convert("RGB")
|
||
|
return self.tform(im)
|
||
|
|
||
|
def hf_dataset(
|
||
|
name,
|
||
|
image_transforms=[],
|
||
|
image_column="img",
|
||
|
label_column="label",
|
||
|
text_column="txt",
|
||
|
split='train',
|
||
|
image_key='image',
|
||
|
caption_key='txt',
|
||
|
):
|
||
|
"""Make huggingface dataset with appropriate list of transforms applied
|
||
|
"""
|
||
|
ds = load_dataset(name, split=split)
|
||
|
image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
|
||
|
image_transforms.extend([transforms.ToTensor(),
|
||
|
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
|
||
|
tform = transforms.Compose(image_transforms)
|
||
|
|
||
|
assert image_column in ds.column_names, f"Didn't find column {image_column} in {ds.column_names}"
|
||
|
assert label_column in ds.column_names, f"Didn't find column {label_column} in {ds.column_names}"
|
||
|
|
||
|
def pre_process(examples):
|
||
|
processed = {}
|
||
|
processed[image_key] = [tform(im) for im in examples[image_column]]
|
||
|
|
||
|
label_to_text_dict = {0: "airplane", 1: "automobile", 2: "bird", 3: "cat", 4: "deer", 5: "dog", 6: "frog", 7: "horse", 8: "ship", 9: "truck"}
|
||
|
|
||
|
processed[caption_key] = [label_to_text_dict[label] for label in examples[label_column]]
|
||
|
|
||
|
return processed
|
||
|
|
||
|
ds.set_transform(pre_process)
|
||
|
return ds
|
||
|
|
||
|
class TextOnly(Dataset):
|
||
|
def __init__(self, captions, output_size, image_key="image", caption_key="txt", n_gpus=1):
|
||
|
"""Returns only captions with dummy images"""
|
||
|
self.output_size = output_size
|
||
|
self.image_key = image_key
|
||
|
self.caption_key = caption_key
|
||
|
if isinstance(captions, Path):
|
||
|
self.captions = self._load_caption_file(captions)
|
||
|
else:
|
||
|
self.captions = captions
|
||
|
|
||
|
if n_gpus > 1:
|
||
|
# hack to make sure that all the captions appear on each gpu
|
||
|
repeated = [n_gpus*[x] for x in self.captions]
|
||
|
self.captions = []
|
||
|
[self.captions.extend(x) for x in repeated]
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self.captions)
|
||
|
|
||
|
def __getitem__(self, index):
|
||
|
dummy_im = torch.zeros(3, self.output_size, self.output_size)
|
||
|
dummy_im = rearrange(dummy_im * 2. - 1., 'c h w -> h w c')
|
||
|
return {self.image_key: dummy_im, self.caption_key: self.captions[index]}
|
||
|
|
||
|
def _load_caption_file(self, filename):
|
||
|
with open(filename, 'rt') as f:
|
||
|
captions = f.readlines()
|
||
|
return [x.strip('\n') for x in captions]
|