|
|
|
import argparse
|
|
|
|
import os
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import torch
|
|
|
|
from titans.utils import barrier_context
|
|
|
|
from torch.fx import GraphModule
|
|
|
|
from torchvision import transforms
|
|
|
|
from torchvision.datasets import CIFAR10
|
|
|
|
from torchvision.models import resnet50
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
|
|
import colossalai
|
|
|
|
from colossalai.auto_parallel.passes.runtime_apply_pass import runtime_apply_pass
|
|
|
|
from colossalai.auto_parallel.passes.runtime_preparation_pass import runtime_preparation_pass
|
|
|
|
from colossalai.auto_parallel.tensor_shard.solver.cost_graph import CostGraph
|
|
|
|
from colossalai.auto_parallel.tensor_shard.solver.graph_analysis import GraphAnalyser
|
|
|
|
from colossalai.auto_parallel.tensor_shard.solver.options import SolverOptions
|
|
|
|
from colossalai.auto_parallel.tensor_shard.solver.solver import Solver
|
|
|
|
from colossalai.auto_parallel.tensor_shard.solver.strategies_constructor import StrategiesConstructor
|
|
|
|
from colossalai.core import global_context as gpc
|
|
|
|
from colossalai.device.device_mesh import DeviceMesh
|
|
|
|
from colossalai.fx.tracer.tracer import ColoTracer
|
|
|
|
from colossalai.logging import get_dist_logger
|
|
|
|
from colossalai.nn.lr_scheduler import CosineAnnealingLR
|
|
|
|
from colossalai.utils import get_dataloader
|
|
|
|
|
|
|
|
DATA_ROOT = Path(os.environ.get('DATA', '../data')).absolute()
|
|
|
|
BATCH_SIZE = 1024
|
|
|
|
NUM_EPOCHS = 10
|
|
|
|
|
|
|
|
|
|
|
|
def parse_args():
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument('-s', '--synthetic', action="store_true", help="use synthetic dataset instead of CIFAR10")
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
|
|
|
|
|
|
def synthesize_data():
|
|
|
|
img = torch.rand(BATCH_SIZE, 3, 32, 32)
|
|
|
|
label = torch.randint(low=0, high=10, size=(BATCH_SIZE,))
|
|
|
|
return img, label
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
args = parse_args()
|
|
|
|
colossalai.launch_from_torch(config={})
|
|
|
|
|
|
|
|
logger = get_dist_logger()
|
|
|
|
|
|
|
|
if not args.synthetic:
|
|
|
|
with barrier_context():
|
|
|
|
# build dataloaders
|
|
|
|
train_dataset = CIFAR10(root=DATA_ROOT,
|
|
|
|
download=True,
|
|
|
|
transform=transforms.Compose([
|
|
|
|
transforms.RandomCrop(size=32, padding=4),
|
|
|
|
transforms.RandomHorizontalFlip(),
|
|
|
|
transforms.ToTensor(),
|
|
|
|
transforms.Normalize(mean=[0.4914, 0.4822, 0.4465],
|
|
|
|
std=[0.2023, 0.1994, 0.2010]),
|
|
|
|
]))
|
|
|
|
|
|
|
|
test_dataset = CIFAR10(root=DATA_ROOT,
|
|
|
|
train=False,
|
|
|
|
transform=transforms.Compose([
|
|
|
|
transforms.ToTensor(),
|
|
|
|
transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010]),
|
|
|
|
]))
|
|
|
|
|
|
|
|
train_dataloader = get_dataloader(
|
|
|
|
dataset=train_dataset,
|
|
|
|
add_sampler=False,
|
|
|
|
shuffle=True,
|
|
|
|
batch_size=BATCH_SIZE,
|
|
|
|
pin_memory=True,
|
|
|
|
)
|
|
|
|
|
|
|
|
test_dataloader = get_dataloader(
|
|
|
|
dataset=test_dataset,
|
|
|
|
add_sampler=False,
|
|
|
|
batch_size=BATCH_SIZE,
|
|
|
|
pin_memory=True,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
train_dataloader, test_dataloader = None, None
|
|
|
|
|
|
|
|
# initialize device mesh
|
|
|
|
physical_mesh_id = torch.arange(0, 4)
|
|
|
|
mesh_shape = (2, 2)
|
|
|
|
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
|
|
|
|
|
|
|
# trace the model with meta data
|
|
|
|
tracer = ColoTracer()
|
|
|
|
model = resnet50(num_classes=10).cuda()
|
|
|
|
input_sample = {'x': torch.rand([1024, 3, 32, 32]).to('meta')}
|
|
|
|
graph = tracer.trace(root=model, meta_args=input_sample)
|
|
|
|
gm = GraphModule(model, graph, model.__class__.__name__)
|
|
|
|
gm.recompile()
|
|
|
|
|
|
|
|
# prepare info for solver
|
|
|
|
solver_options = SolverOptions(fast=True)
|
|
|
|
strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options)
|
|
|
|
strategies_constructor.build_strategies_and_cost()
|
|
|
|
cost_graph = CostGraph(strategies_constructor.leaf_strategies)
|
|
|
|
cost_graph.simplify_graph()
|
|
|
|
graph_analyser = GraphAnalyser(gm)
|
|
|
|
|
|
|
|
# solve the solution
|
|
|
|
solver = Solver(gm.graph, strategies_constructor, cost_graph, graph_analyser)
|
|
|
|
ret = solver.call_solver_serialized_args()
|
|
|
|
solution = list(ret[0])
|
|
|
|
if gpc.get_global_rank() == 0:
|
|
|
|
for index, node in enumerate(graph.nodes):
|
|
|
|
print(node.name, node.strategies_vector[solution[index]].name)
|
|
|
|
|
|
|
|
# process the graph for distributed training ability
|
|
|
|
gm, sharding_spec_dict, origin_spec_dict, comm_actions_dict = runtime_preparation_pass(gm, solution, device_mesh)
|
|
|
|
gm = runtime_apply_pass(gm)
|
|
|
|
gm.recompile()
|
|
|
|
|
|
|
|
# build criterion
|
|
|
|
criterion = torch.nn.CrossEntropyLoss()
|
|
|
|
|
|
|
|
# optimizer
|
|
|
|
optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
|
|
|
|
|
|
|
|
# lr_scheduler
|
|
|
|
lr_scheduler = CosineAnnealingLR(optimizer, total_steps=NUM_EPOCHS)
|
|
|
|
|
|
|
|
for epoch in range(NUM_EPOCHS):
|
|
|
|
gm.train()
|
|
|
|
|
|
|
|
if args.synthetic:
|
|
|
|
# if we use synthetic data
|
|
|
|
# we assume it only has 30 steps per epoch
|
|
|
|
num_steps = range(30)
|
|
|
|
|
|
|
|
else:
|
|
|
|
# we use the actual number of steps for training
|
|
|
|
num_steps = range(len(train_dataloader))
|
|
|
|
data_iter = iter(train_dataloader)
|
|
|
|
progress = tqdm(num_steps)
|
|
|
|
|
|
|
|
for _ in progress:
|
|
|
|
if args.synthetic:
|
|
|
|
# generate fake data
|
|
|
|
img, label = synthesize_data()
|
|
|
|
else:
|
|
|
|
# get the real data
|
|
|
|
img, label = next(data_iter)
|
|
|
|
|
|
|
|
img = img.cuda()
|
|
|
|
label = label.cuda()
|
|
|
|
optimizer.zero_grad()
|
|
|
|
output = gm(img, sharding_spec_dict, origin_spec_dict, comm_actions_dict)
|
|
|
|
train_loss = criterion(output, label)
|
|
|
|
train_loss.backward(train_loss)
|
|
|
|
optimizer.step()
|
|
|
|
lr_scheduler.step()
|
|
|
|
|
|
|
|
# run evaluation
|
|
|
|
gm.eval()
|
|
|
|
correct = 0
|
|
|
|
total = 0
|
|
|
|
|
|
|
|
if args.synthetic:
|
|
|
|
# if we use synthetic data
|
|
|
|
# we assume it only has 10 steps for evaluation
|
|
|
|
num_steps = range(30)
|
|
|
|
|
|
|
|
else:
|
|
|
|
# we use the actual number of steps for training
|
|
|
|
num_steps = range(len(test_dataloader))
|
|
|
|
data_iter = iter(test_dataloader)
|
|
|
|
progress = tqdm(num_steps)
|
|
|
|
|
|
|
|
for _ in progress:
|
|
|
|
if args.synthetic:
|
|
|
|
# generate fake data
|
|
|
|
img, label = synthesize_data()
|
|
|
|
else:
|
|
|
|
# get the real data
|
|
|
|
img, label = next(data_iter)
|
|
|
|
|
|
|
|
img = img.cuda()
|
|
|
|
label = label.cuda()
|
|
|
|
|
|
|
|
with torch.no_grad():
|
|
|
|
output = gm(img, sharding_spec_dict, origin_spec_dict, comm_actions_dict)
|
|
|
|
test_loss = criterion(output, label)
|
|
|
|
pred = torch.argmax(output, dim=-1)
|
|
|
|
correct += torch.sum(pred == label)
|
|
|
|
total += img.size(0)
|
|
|
|
|
|
|
|
logger.info(
|
|
|
|
f"Epoch {epoch} - train loss: {train_loss:.5}, test loss: {test_loss:.5}, acc: {correct / total:.5}, lr: {lr_scheduler.get_last_lr()[0]:.5g}",
|
|
|
|
ranks=[0])
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
main()
|