mirror of https://github.com/hpcaitech/ColossalAI
39 lines
1.4 KiB
Python
39 lines
1.4 KiB
Python
![]() |
import torch
|
||
|
from torch.distributed import reduce_scatter
|
||
|
from torch.distributed.distributed_c10d import _get_default_group
|
||
|
from torch.testing import assert_close
|
||
|
|
||
|
from colossalai import launch
|
||
|
from colossalai.accelerator import get_accelerator
|
||
|
from colossalai.quantization.fp8 import reduce_scatter_fp8
|
||
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||
|
|
||
|
|
||
|
@parameterize("shape", [(16, 8, 4)])
|
||
|
@parameterize("scatter_dim", [0, 1, 2])
|
||
|
@parameterize("dtype", [torch.bfloat16, torch.float16])
|
||
|
@parameterize("fp8_format", ["e4m3", "e5m2"])
|
||
|
def check_4gpu(shape, scatter_dim, dtype, fp8_format):
|
||
|
x = torch.rand(shape, dtype=dtype, device=get_accelerator().get_current_device())
|
||
|
input_list = list(torch.chunk(x, dim=scatter_dim, chunks=4))
|
||
|
input_list = [t.contiguous() for t in input_list]
|
||
|
output_origin = torch.empty_like(input_list[0])
|
||
|
output_fp8 = torch.empty_like(input_list[0])
|
||
|
reduce_scatter(output_origin, input_list, group=_get_default_group())
|
||
|
reduce_scatter_fp8(output_fp8, input_list, group=_get_default_group(), fp8_format=fp8_format)
|
||
|
assert_close(output_origin, output_fp8, rtol=0.1, atol=0.1)
|
||
|
|
||
|
|
||
|
def run_dist(rank, world_size, port):
|
||
|
launch(rank=rank, world_size=world_size, port=port, host="localhost")
|
||
|
check_4gpu()
|
||
|
|
||
|
|
||
|
@rerun_if_address_is_in_use()
|
||
|
def test_reduce_scatter():
|
||
|
spawn(run_dist, 4)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
test_reduce_scatter()
|