mirror of https://github.com/hpcaitech/ColossalAI
Browse Source
* add llama shardformer fp8 * Llama Shardformer Parity * fix typo * fix all reduce * fix pytest failure * fix reduce op and move function to fp8.py * fix typopull/5963/head
Guangyao Zhang
4 months ago
committed by
GitHub
11 changed files with 453 additions and 98 deletions
@ -0,0 +1,39 @@
|
||||
import torch |
||||
import torch.distributed as dist |
||||
from torch.distributed.distributed_c10d import _get_default_group |
||||
from torch.testing import assert_close |
||||
|
||||
from colossalai import launch |
||||
from colossalai.accelerator import get_accelerator |
||||
from colossalai.quantization.fp8 import all_to_all_fp8 |
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn |
||||
|
||||
|
||||
@parameterize("shape", [(16, 8, 4)]) |
||||
@parameterize("scatter_dim", [0, 1, 2]) |
||||
@parameterize("dtype", [torch.bfloat16, torch.float16]) |
||||
@parameterize("fp8_format", ["e4m3", "e5m2"]) |
||||
def check_4gpu(shape, scatter_dim, dtype, fp8_format): |
||||
world_size = dist.get_world_size() |
||||
input_tensor = torch.rand(shape, dtype=dtype, device=get_accelerator().get_current_device()) |
||||
input_tensor_list = list(torch.chunk(input_tensor, world_size, scatter_dim)) |
||||
input_tensor_list = [x.contiguous() for x in input_tensor_list] |
||||
output_tensor_list_fp8 = [torch.empty_like(x) for x in input_tensor_list] |
||||
output_tensor_list = [torch.empty_like(x) for x in input_tensor_list] |
||||
all_to_all_fp8(output_tensor_list_fp8, input_tensor_list, group=_get_default_group(), fp8_format=fp8_format) |
||||
dist.all_to_all(output_tensor_list, input_tensor_list, group=_get_default_group()) |
||||
assert_close(output_tensor_list_fp8, output_tensor_list, rtol=0.1, atol=0.1) |
||||
|
||||
|
||||
def run_dist(rank, world_size, port): |
||||
launch(rank=rank, world_size=world_size, port=port, host="localhost") |
||||
check_4gpu() |
||||
|
||||
|
||||
@rerun_if_address_is_in_use() |
||||
def test_all_to_all(): |
||||
spawn(run_dist, 4) |
||||
|
||||
|
||||
if __name__ == "__main__": |
||||
test_all_to_all() |
@ -0,0 +1,37 @@
|
||||
import torch |
||||
import torch.distributed as dist |
||||
from torch.distributed.distributed_c10d import _get_default_group |
||||
from torch.testing import assert_close |
||||
|
||||
from colossalai import launch |
||||
from colossalai.accelerator import get_accelerator |
||||
from colossalai.quantization.fp8 import all_to_all_single_fp8 |
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn |
||||
|
||||
dist.all_to_all_single |
||||
|
||||
|
||||
@parameterize("shape", [(4), (8, 7), (4, 8, 16)]) |
||||
@parameterize("dtype", [torch.bfloat16, torch.float16]) |
||||
@parameterize("fp8_format", ["e4m3", "e5m2"]) |
||||
def check_4gpu(shape, dtype, fp8_format): |
||||
x = torch.rand(shape, dtype=dtype, device=get_accelerator().get_current_device()) |
||||
output = torch.empty_like(x) |
||||
output_fp8 = torch.empty_like(x) |
||||
all_to_all_single_fp8(output_fp8, x, group=_get_default_group(), fp8_format=fp8_format) |
||||
dist.all_to_all_single(output, x, group=_get_default_group()) |
||||
assert_close(output, output_fp8, rtol=0.1, atol=0.1) |
||||
|
||||
|
||||
def run_dist(rank, world_size, port): |
||||
launch(rank=rank, world_size=world_size, port=port, host="localhost") |
||||
check_4gpu() |
||||
|
||||
|
||||
@rerun_if_address_is_in_use() |
||||
def test_all_to_all_single(): |
||||
spawn(run_dist, 4) |
||||
|
||||
|
||||
if __name__ == "__main__": |
||||
test_all_to_all_single() |
@ -0,0 +1,48 @@
|
||||
import torch |
||||
import torch.distributed as dist |
||||
from torch.testing import assert_close |
||||
|
||||
from colossalai import launch |
||||
from colossalai.accelerator import get_accelerator |
||||
from colossalai.quantization.fp8 import all_reduce_fp8 |
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn |
||||
|
||||
|
||||
@parameterize( |
||||
"shape", |
||||
[ |
||||
(3, 7), |
||||
(4, 7), |
||||
(7, 4), |
||||
(8, 9), |
||||
(3), |
||||
(7,), |
||||
(8,), |
||||
], |
||||
) |
||||
@parameterize("dtype", [torch.float16, torch.bfloat16]) |
||||
@parameterize("fp8_format", ["e4m3", "e5m2"]) |
||||
def check_4gpu(shape, dtype, fp8_format): |
||||
x = torch.rand(shape, dtype=dtype, device=get_accelerator().get_current_device()) |
||||
x_fp8 = x.clone() |
||||
dist.all_reduce(x) |
||||
all_reduce_fp8(x_fp8, fp8_format=fp8_format) |
||||
assert_close(x, x_fp8, rtol=0.1, atol=0.1) |
||||
|
||||
dist.all_reduce(x, op=dist.ReduceOp.AVG) |
||||
all_reduce_fp8(x_fp8, op=dist.ReduceOp.AVG, fp8_format=fp8_format) |
||||
assert_close(x, x_fp8, rtol=0.1, atol=0.1) |
||||
|
||||
|
||||
def run_dist(rank, world_size, port): |
||||
launch(rank=rank, world_size=world_size, port=port, host="localhost") |
||||
check_4gpu() |
||||
|
||||
|
||||
@rerun_if_address_is_in_use() |
||||
def test_all_reduce(): |
||||
spawn(run_dist, 4) |
||||
|
||||
|
||||
if __name__ == "__main__": |
||||
test_all_reduce() |
@ -0,0 +1,48 @@
|
||||
import torch |
||||
import torch.distributed as dist |
||||
from torch.distributed.distributed_c10d import _get_default_group |
||||
from torch.testing import assert_close |
||||
|
||||
from colossalai import launch |
||||
from colossalai.accelerator import get_accelerator |
||||
from colossalai.quantization.fp8 import gather_fp8 |
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn |
||||
|
||||
|
||||
@parameterize( |
||||
"shape", |
||||
[ |
||||
(3, 7), |
||||
(2, 1), |
||||
(1, 2), |
||||
(2, 2), |
||||
(4, 2), |
||||
(5,), |
||||
(4,), |
||||
(2,), |
||||
], |
||||
) |
||||
@parameterize("dtype", [torch.bfloat16, torch.float16]) |
||||
@parameterize("fp8_format", ["e4m3", "e5m2"]) |
||||
def check_4gpu(shape, dtype, fp8_format): |
||||
world_size = dist.get_world_size() |
||||
x = torch.rand(shape, dtype=dtype, device=get_accelerator().get_current_device()) |
||||
output_list = [torch.empty_like(x) for _ in range(world_size)] |
||||
output_list_fp8 = [torch.empty_like(x) for _ in range(world_size)] |
||||
gather_fp8(output_list_fp8, x, group=_get_default_group(), fp8_format=fp8_format) |
||||
dist.all_gather(output_list, x, group=_get_default_group()) |
||||
assert_close(output_list, output_list_fp8, rtol=0.1, atol=0.1) |
||||
|
||||
|
||||
def run_dist(rank, world_size, port): |
||||
launch(rank=rank, world_size=world_size, port=port, host="localhost") |
||||
check_4gpu() |
||||
|
||||
|
||||
@rerun_if_address_is_in_use() |
||||
def test_all_gather(): |
||||
spawn(run_dist, 4) |
||||
|
||||
|
||||
if __name__ == "__main__": |
||||
test_all_gather() |
@ -0,0 +1,38 @@
|
||||
import torch |
||||
from torch.distributed import reduce_scatter |
||||
from torch.distributed.distributed_c10d import _get_default_group |
||||
from torch.testing import assert_close |
||||
|
||||
from colossalai import launch |
||||
from colossalai.accelerator import get_accelerator |
||||
from colossalai.quantization.fp8 import reduce_scatter_fp8 |
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn |
||||
|
||||
|
||||
@parameterize("shape", [(16, 8, 4)]) |
||||
@parameterize("scatter_dim", [0, 1, 2]) |
||||
@parameterize("dtype", [torch.bfloat16, torch.float16]) |
||||
@parameterize("fp8_format", ["e4m3", "e5m2"]) |
||||
def check_4gpu(shape, scatter_dim, dtype, fp8_format): |
||||
x = torch.rand(shape, dtype=dtype, device=get_accelerator().get_current_device()) |
||||
input_list = list(torch.chunk(x, dim=scatter_dim, chunks=4)) |
||||
input_list = [t.contiguous() for t in input_list] |
||||
output_origin = torch.empty_like(input_list[0]) |
||||
output_fp8 = torch.empty_like(input_list[0]) |
||||
reduce_scatter(output_origin, input_list, group=_get_default_group()) |
||||
reduce_scatter_fp8(output_fp8, input_list, group=_get_default_group(), fp8_format=fp8_format) |
||||
assert_close(output_origin, output_fp8, rtol=0.1, atol=0.1) |
||||
|
||||
|
||||
def run_dist(rank, world_size, port): |
||||
launch(rank=rank, world_size=world_size, port=port, host="localhost") |
||||
check_4gpu() |
||||
|
||||
|
||||
@rerun_if_address_is_in_use() |
||||
def test_reduce_scatter(): |
||||
spawn(run_dist, 4) |
||||
|
||||
|
||||
if __name__ == "__main__": |
||||
test_reduce_scatter() |
Loading…
Reference in new issue