Browse Source

[Feature] llama shardformer fp8 support (#5938)

* add llama shardformer fp8

* Llama Shardformer Parity

* fix typo

* fix all reduce

* fix pytest failure

* fix reduce op and move function to fp8.py

* fix typo
pull/5963/head
Guangyao Zhang 4 months ago committed by GitHub
parent
commit
53cb9606bd
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 113
      colossalai/quantization/fp8.py
  2. 157
      colossalai/shardformer/layer/_operation.py
  3. 22
      colossalai/shardformer/layer/linear.py
  4. 30
      colossalai/shardformer/modeling/llama.py
  5. 15
      colossalai/shardformer/policies/llama.py
  6. 39
      tests/test_fp8/test_fp8_all_to_all.py
  7. 37
      tests/test_fp8/test_fp8_all_to_all_single.py
  8. 4
      tests/test_fp8/test_fp8_allgather_flat.py
  9. 48
      tests/test_fp8/test_fp8_allreduce.py
  10. 48
      tests/test_fp8/test_fp8_gather.py
  11. 38
      tests/test_fp8/test_fp8_reduce_scatter.py

113
colossalai/quantization/fp8.py

@ -3,9 +3,11 @@ from typing import Any
import numpy as np
import torch
import torch.distributed as dist
import torch.nn.functional as F
from torch.distributed import ReduceOp
def cast_to_fp8(inp: torch.Tensor, fp8_format="e4m3") -> (torch.Tensor, torch.Tensor):
def cast_to_fp8(inp: torch.Tensor, fp8_format="e4m3", per_channel_scale=False) -> (torch.Tensor, torch.Tensor):
r"""
casting torch Tensor into specified fp8 tensor with per-channel scaling or per-tensor scaling.
Args:
@ -23,7 +25,7 @@ def cast_to_fp8(inp: torch.Tensor, fp8_format="e4m3") -> (torch.Tensor, torch.Te
fp8_type = torch.float8_e4m3fn if fp8_format == "e4m3" else torch.float8_e5m2
fp8_max = torch.finfo(fp8_type).max
if inp.dim() == 2:
if per_channel_scale:
per_channel_max = inp.abs().max(dim=-1).values.float()
per_channel_max = torch.where(per_channel_max > 0, per_channel_max, 1.0)
scale = fp8_max / per_channel_max[:, None]
@ -37,7 +39,9 @@ def cast_to_fp8(inp: torch.Tensor, fp8_format="e4m3") -> (torch.Tensor, torch.Te
return ret, scale_inv
def cast_from_fp8(inp: torch.Tensor, scale_inv: torch.Tensor, ret_type: torch.dtype) -> torch.Tensor:
def cast_from_fp8(
inp: torch.Tensor, scale_inv: torch.Tensor, ret_type: torch.dtype, per_channel_scale=False
) -> torch.Tensor:
r"""
Args:
inp: should be a fp8 torch tensor in one of the types: [torch.float8_e4m3fn, torch.float8_e5m2].
@ -49,20 +53,23 @@ def cast_from_fp8(inp: torch.Tensor, scale_inv: torch.Tensor, ret_type: torch.dt
if inp.dtype not in [torch.float8_e4m3fn, torch.float8_e5m2]:
raise TypeError("Only float8_e4m3fn and float8_e5m2 are allowed.")
if inp.dim() == 2:
if per_channel_scale:
ret = scale_inv[:, None] * inp.float()
else:
ret = scale_inv * inp.float()
return ret.to(ret_type)
def all_reduce_fp8(tensor: torch.Tensor, fp8_format="e5m2", group=None) -> None:
def all_reduce_fp8(tensor: torch.Tensor, fp8_format="e4m3", op=ReduceOp.SUM, group=None) -> None:
r"""
This is an in-place operation for compressed all_reduce using fp8.
It works like dist.all_reduce but during communication the data is cast to fp8 format.
Args:
tensor: torch.Tensor in fp32, fp16, bf16 datatype.
fp8_format: e4m3 or e5m2
op: ReduceOp.SUM or ReduceOp.AVG
Returns:
None
"""
@ -72,18 +79,20 @@ def all_reduce_fp8(tensor: torch.Tensor, fp8_format="e5m2", group=None) -> None:
input_shape = tensor.shape
input_device = tensor.device
input_size = tensor.numel()
tensor = tensor.flatten()
flat_padded_x = tensor.flatten()
fp8_type = torch.float8_e4m3fn if fp8_format == "e4m3" else torch.float8_e5m2
assert op in [ReduceOp.SUM, ReduceOp.AVG], "op can only be ReduceOp.SUM or ReduceOp.AVG"
ret, scale = cast_to_fp8(tensor, fp8_format=fp8_format)
if flat_padded_x.size(0) % world_size != 0:
pad_size = world_size - flat_padded_x.size(0) % world_size
flat_padded_x = F.pad(flat_padded_x, (0, pad_size))
fp8_type = torch.float8_e4m3fn if fp8_format == "e4m3" else torch.float8_e5m2
ret, scale = cast_to_fp8(flat_padded_x, fp8_format=fp8_format)
inp = ret.view(torch.uint8)
input_chunks = list(torch.chunk(inp, world_size, dim=0))
if dist.get_rank() == world_size - 1:
output_chunks = [torch.empty_like(input_chunks[-1]) for _ in range(world_size)]
else:
output_chunks = [torch.empty_like(input_chunks[0]) for _ in range(world_size)]
output_chunks = list(torch.chunk(torch.empty_like(inp), world_size, dim=0))
dist.all_to_all(output_chunks, input_chunks, group=group)
scale_list = [torch.ones(1, dtype=scale.dtype, device=input_device) for _ in range(world_size)]
dist.all_gather(scale_list, scale, group=group)
@ -92,15 +101,18 @@ def all_reduce_fp8(tensor: torch.Tensor, fp8_format="e5m2", group=None) -> None:
out = out.view(fp8_type)
summed_out += cast_from_fp8(out, scale, input_type)
if op == ReduceOp.AVG:
summed_out.div_(world_size)
summed_out_fp8, scale = cast_to_fp8(summed_out, fp8_format=fp8_format)
dist.all_gather(scale_list, scale, group=group)
tensor_list = list(torch.chunk(torch.empty(input_size, device=input_device, dtype=torch.uint8), world_size, dim=0))
tensor_list = [torch.empty_like(summed_out_fp8.view(torch.uint8)) for _ in range(world_size)]
dist.all_gather(tensor_list, summed_out_fp8.view(torch.uint8), group=group)
for i in range(world_size):
tensor_list[i] = tensor_list[i].view(fp8_type).to(input_type) * scale_list[i]
tensor_out = torch.cat(tensor_list, dim=0)
tensor.data = tensor_out.view(input_shape).to(input_type)
out = torch.cat(tensor_list, dim=0)
tensor.copy_(out[:input_size].view(input_shape).to(input_type))
def cast_to_fp8_pipeline(inp: Any) -> None:
@ -276,5 +288,74 @@ def all_gather_into_tensor_flat_fp8(
dist.all_gather_into_tensor(buffer.view(torch.uint8), fp8_input.view(torch.uint8), group=group)
numel = np.prod(output_shape)
valid_buffer = buffer[:numel].reshape(output_shape)
valid_buffer = cast_from_fp8(valid_buffer, scale_inv, input_type)
valid_buffer = cast_from_fp8(valid_buffer, scale_inv, input_type, per_channel_scale=(len(output_shape) == 2))
output_tensor[:numel].copy_(valid_buffer.view(-1))
def all_to_all_fp8(output_list, input_list, group=None, fp8_format="e5m2"):
world_size = dist.get_world_size(group)
input_type = input_list[0].dtype
fp8_type = torch.float8_e4m3fn if fp8_format == "e4m3" else torch.float8_e5m2
scale_list = []
tensor_list = []
for i in range(world_size):
input_tensor = input_list[i]
ret, scale = cast_to_fp8(input_tensor, fp8_format=fp8_format)
scale_list.append(scale)
ret = ret.view(torch.uint8)
tensor_list.append(ret)
output_scale_list = [torch.empty_like(x) for x in scale_list]
output_tensor_list = [torch.empty_like(x) for x in tensor_list]
dist.all_to_all(output_tensor_list, tensor_list, group=group)
dist.all_to_all(output_scale_list, scale_list, group=group)
for i in range(world_size):
scale = output_scale_list[i]
tensor = output_tensor_list[i]
tensor = tensor.view(fp8_type)
output_list[i].copy_(cast_from_fp8(tensor, scale, input_type))
def all_to_all_single_fp8(output_tensor, input_tensor, group=None, fp8_format="e5m2"):
world_size = dist.get_world_size(group)
per_slice_len = input_tensor.size(0) // world_size
input_type = input_tensor.dtype
ret, scale = cast_to_fp8(input_tensor, fp8_format=fp8_format)
fp8_type = ret.dtype
input_tensor = ret.view(torch.uint8)
tensor = torch.empty_like(input_tensor)
scale_list = [torch.empty_like(scale) for _ in range(world_size)]
dist.all_to_all_single(tensor, input_tensor, group=group)
dist.all_gather(scale_list, scale, group=group)
cast_tensor_list = []
for i in range(world_size):
output_part = tensor[per_slice_len * i : per_slice_len * (i + 1)].view(fp8_type)
output_part = cast_from_fp8(output_part, scale_list[i], input_type)
cast_tensor_list.append(output_part)
output_tensor.copy_(torch.concatenate(cast_tensor_list, dim=0))
def gather_fp8(output_list, input_, group=None, fp8_format="e5m2"):
world_size = dist.get_world_size(group)
input_type = input_.dtype
ret, scale = cast_to_fp8(input_, fp8_format=fp8_format)
fp8_type = ret.dtype
input_ = ret.view(torch.uint8)
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
scale_list = [torch.ones(1, dtype=scale.dtype, device=input_.device) for _ in range(world_size)]
dist.all_gather(tensor_list, input_, group=group)
dist.all_gather(scale_list, scale, group=group)
for i in range(world_size):
output = tensor_list[i].view(fp8_type)
scale = scale_list[i]
output_list[i].copy_(cast_from_fp8(output, scale, input_type))

157
colossalai/shardformer/layer/_operation.py

@ -14,7 +14,13 @@ try:
except ImportError:
_grad_accum_fusion_available = False
from colossalai.quantization.fp8 import all_reduce_fp8, cast_from_fp8, cast_to_fp8, reduce_scatter_fp8
from colossalai.quantization.fp8 import (
all_reduce_fp8,
all_to_all_fp8,
all_to_all_single_fp8,
gather_fp8,
reduce_scatter_fp8,
)
class FusedLayerNormAffineFunction1D(torch.autograd.Function):
@ -117,11 +123,12 @@ class LinearWithAsyncCommunication(torch.autograd.Function):
"""
@staticmethod
def forward(ctx, input_, weight, bias, process_group, async_grad_allreduce):
def forward(ctx, input_, weight, bias, process_group, async_grad_allreduce, fp8_communication=False):
ctx.save_for_backward(input_, weight, bias)
ctx.use_bias = bias is not None
ctx.process_group = process_group
ctx.async_grad_allreduce = async_grad_allreduce
ctx.fp8_communication = fp8_communication
if bias is not None:
output = F.linear(input_, weight, bias)
else:
@ -133,6 +140,7 @@ class LinearWithAsyncCommunication(torch.autograd.Function):
def backward(ctx, grad_output):
input, weight, bias = ctx.saved_tensors
use_bias = ctx.use_bias
fp8_communication = ctx.fp8_communication
# In order to be hooked into Gemini's '__torch_function__', adding a view operation to bias.
if use_bias:
@ -148,7 +156,10 @@ class LinearWithAsyncCommunication(torch.autograd.Function):
if ctx.async_grad_allreduce:
# Asynchronous all-reduce
handle = dist.all_reduce(grad_input, group=ctx.process_group, async_op=True)
if fp8_communication:
all_reduce_fp8(grad_input, group=ctx.process_group)
else:
handle = dist.all_reduce(grad_input, group=ctx.process_group, async_op=True)
# Relay on CUDA_DEVICE_MAX_CONNECTIONS=1 to have
# all-reduce scheduled first and have GPU resources allocated, CUDA_DEVICE_MAX_CONNECTIONS=1 is set in shardformer.py
@ -167,10 +178,10 @@ class LinearWithAsyncCommunication(torch.autograd.Function):
grad_bias = grad_output.sum(dim=0) if use_bias else None
if ctx.async_grad_allreduce:
if ctx.async_grad_allreduce and not fp8_communication:
handle.wait()
return grad_input, grad_weight, grad_bias, None, None, None
return grad_input, grad_weight, grad_bias, None, None, None, None
def _ring_as_gather(func, input_to_gather=None, input_local=None, process_group=None, gather_dim=1, keep_item=False):
@ -238,16 +249,18 @@ class _GatherForwardReduceScatterBackward(torch.autograd.Function):
"""
@staticmethod
def forward(ctx, input_, process_group, dim):
def forward(ctx, input_, process_group, dim, fp8_communication=False):
ctx.process_group = process_group
ctx.dim = dim
ctx.fp8_communication = fp8_communication
return _gather(input_, dim, process_group)
return _gather(input_, dim, process_group, fp8_communication, fp8_format="e4m3")
@staticmethod
def backward(ctx, grad_output):
dim = ctx.dim
process_group = ctx.process_group
fp8_communication = ctx.fp8_communication
# do reduce-scatter
new_shape = list(grad_output.shape)
assert (
@ -259,9 +272,12 @@ class _GatherForwardReduceScatterBackward(torch.autograd.Function):
]
output = torch.empty(new_shape, dtype=grad_output.dtype, device=grad_output.device)
dist.reduce_scatter(output, grad_list, group=process_group)
if fp8_communication:
reduce_scatter_fp8(output, grad_list, group=process_group, fp8_format="e5m2")
else:
dist.reduce_scatter(output, grad_list, group=process_group)
return output, None, None
return output, None, None, None
class _LinearWithGatherForwardReduceScatterBackward(torch.autograd.Function):
@ -577,12 +593,8 @@ class _ReduceScatterForwardGatherBackward(torch.autograd.Function):
dim = ctx.dim
process_group = ctx.process_group
fp8_communication = ctx.fp8_communication
return (
_gather(grad_output, dim, process_group, fp8_communication=fp8_communication, fp8_format="e5m2"),
None,
None,
None,
)
return _gather(grad_output, dim, process_group, fp8_communication, fp8_format="e5m2"), None, None, None
class _MatmulWithGatherForwardReduceScatterBackward(torch.autograd.Function):
@ -816,26 +828,67 @@ class _AllToAll(torch.autograd.Function):
"""
@staticmethod
def forward(ctx, input_, process_group, scatter_dim, gather_dim):
def forward(ctx, input_, process_group, scatter_dim, gather_dim, fp8_communication=False):
ctx.process_group = process_group
ctx.scatter_dim = scatter_dim
ctx.gather_dim = gather_dim
ctx.fp8_communication = fp8_communication
world_size = dist.get_world_size(process_group)
bsz, _, _ = input_.shape
# using all_to_all_single when batch size is 1
if bsz == 1:
return _all_to_all_single(input_, world_size, process_group, scatter_dim, gather_dim)
return _all_to_all_single(
input_,
world_size,
process_group,
scatter_dim,
gather_dim,
fp8_communication=fp8_communication,
fp8_format="e4m3",
)
else:
return _all_to_all(input_, world_size, process_group, scatter_dim, gather_dim)
return _all_to_all(
input_,
world_size,
process_group,
scatter_dim,
gather_dim,
fp8_communication=fp8_communication,
fp8_format="e4m3",
)
@staticmethod
def backward(ctx, *grad_output):
def backward(ctx, grad_output):
process_group = ctx.process_group
scatter_dim = ctx.gather_dim
gather_dim = ctx.scatter_dim
return_grad = _AllToAll.apply(*grad_output, process_group, scatter_dim, gather_dim)
return (return_grad, None, None, None)
fp8_communication = ctx.fp8_communication
world_size = dist.get_world_size(process_group)
bsz, _, _ = grad_output.shape
if bsz == 1:
return_grad = _all_to_all_single(
grad_output,
world_size,
process_group,
scatter_dim,
gather_dim,
fp8_communication=fp8_communication,
fp8_format="e5m2",
)
else:
return_grad = _all_to_all(
grad_output,
world_size,
process_group,
scatter_dim,
gather_dim,
fp8_communication=fp8_communication,
fp8_format="e5m2",
)
return (return_grad, None, None, None, None)
class HookParameter(torch.autograd.Function):
@ -899,33 +952,14 @@ def _gather(input_, dim=-1, process_group=None, fp8_communication=False, fp8_for
if world_size == 1:
return input_
input_ = input_.contiguous()
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
if fp8_communication:
input_type = input_.dtype
ret, scale = cast_to_fp8(input_, fp8_format=fp8_format)
fp8_type = ret.dtype
input_ = ret.view(torch.uint8)
input_ = input_.contiguous()
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
scale = torch.tensor(scale, dtype=torch.float32).to(input_.device)
scale_list = [torch.ones(1, dtype=torch.float32, device=input_.device) for _ in range(world_size)]
scale = torch.tensor(scale).to(input_.device)
torch.distributed.all_gather(tensor_list, input_, group=process_group)
torch.distributed.all_gather(scale_list, scale, group=process_group)
cast_tensor_list = []
for output, scale in zip(tensor_list, scale_list):
output = output.view(fp8_type)
output = cast_from_fp8(output, scale, input_type)
cast_tensor_list.append(output)
output = torch.cat(cast_tensor_list, dim=dim).contiguous()
gather_fp8(tensor_list, input_, fp8_format=fp8_format, group=process_group)
else:
input_ = input_.contiguous()
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
torch.distributed.all_gather(tensor_list, input_, group=process_group)
output = torch.cat(tensor_list, dim=dim).contiguous()
dist.all_gather(tensor_list, input_, group=process_group)
output = torch.cat(tensor_list, dim=dim).contiguous()
return output
@ -954,14 +988,19 @@ def _reduce_scatter(input_, dim=1, process_group=None):
return output
def _all_to_all(input_, world_size, group, scatter_dim, gather_dim):
def _all_to_all(input_, world_size, group, scatter_dim, gather_dim, fp8_communication=False, fp8_format="e5m2"):
input_list = [t.contiguous() for t in torch.tensor_split(input_, world_size, scatter_dim)]
output_list = [torch.empty_like(input_list[0]) for _ in range(world_size)]
dist.all_to_all(output_list, input_list, group=group)
if fp8_communication:
all_to_all_fp8(output_list, input_list, group=group, fp8_format=fp8_format)
else:
dist.all_to_all(output_list, input_list, group=group)
return torch.cat(output_list, dim=gather_dim).contiguous()
def _all_to_all_single(input_, seq_world_size, group, scatter_dim, gather_dim):
def _all_to_all_single(
input_, seq_world_size, group, scatter_dim, gather_dim, fp8_communication=False, fp8_format="e5m2"
):
inp_shape = list(input_.shape)
inp_shape[scatter_dim] = inp_shape[scatter_dim] // seq_world_size
if scatter_dim < 2:
@ -974,7 +1013,11 @@ def _all_to_all_single(input_, seq_world_size, group, scatter_dim, gather_dim):
)
output = torch.empty_like(input_t)
dist.all_to_all_single(output, input_t, group=group)
if fp8_communication:
all_to_all_single_fp8(output, input_t, group=group, fp8_format=fp8_format)
else:
dist.all_to_all_single(output, input_t, group=group)
if scatter_dim < 2:
output = output.transpose(0, 1).contiguous()
@ -994,8 +1037,10 @@ def matmul_with_async_comm(input_, weight, bias, process_group, async_grad_allre
)
def linear_with_async_comm(input_, weight, bias, process_group, async_grad_allreduce):
return LinearWithAsyncCommunication.apply(input_, weight, bias, process_group, async_grad_allreduce)
def linear_with_async_comm(input_, weight, bias, process_group, async_grad_allreduce, fp8_communication=False):
return LinearWithAsyncCommunication.apply(
input_, weight, bias, process_group, async_grad_allreduce, fp8_communication
)
def linear_gather_forward_reducescatter_backward(
@ -1006,8 +1051,8 @@ def linear_gather_forward_reducescatter_backward(
)
def gather_forward_reducescatter_backward(input_, process_group, dim):
return _GatherForwardReduceScatterBackward.apply(input_, process_group, dim)
def gather_forward_reducescatter_backward(input_, process_group, dim, fp8_communication=False):
return _GatherForwardReduceScatterBackward.apply(input_, process_group, dim, fp8_communication)
def reducescatter_forward_gather_backward(input_, process_group, dim, fp8_communication=False):
@ -1042,5 +1087,5 @@ def reduce_backward(input_, process_group, fp8_communication=False):
return _ReduceBackward.apply(input_, process_group, fp8_communication)
def all_to_all_comm(input_, process_group=None, scatter_dim=2, gather_dim=1):
return _AllToAll.apply(input_, process_group, scatter_dim, gather_dim)
def all_to_all_comm(input_, process_group=None, scatter_dim=2, gather_dim=1, fp8_communication=False):
return _AllToAll.apply(input_, process_group, scatter_dim, gather_dim, fp8_communication)

22
colossalai/shardformer/layer/linear.py

@ -84,6 +84,7 @@ class Linear1D_Col(ParallelModule):
bias_: Optional[Parameter] = None,
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
fp8_communication: bool = False,
**kwargs,
):
super().__init__(weight=weight, bias_=bias_, **kwargs)
@ -98,6 +99,7 @@ class Linear1D_Col(ParallelModule):
self.skip_bias_add = skip_bias_add
self.device = device
self.process_group = process_group
self.fp8_communication = fp8_communication
if skip_bias_add and not bias:
raise ValueError("cannot skip bias addition if bias is None")
@ -201,10 +203,12 @@ class Linear1D_Col(ParallelModule):
bias = self.bias if not self.skip_bias_add else None
if self.seq_parallel_mode is None:
output_parallel = linear_with_async_comm(input_parallel, self.weight, bias, self.process_group, True)
output_parallel = linear_with_async_comm(
input_parallel, self.weight, bias, self.process_group, True, fp8_communication=self.fp8_communication
)
elif self.seq_parallel_mode == "split_gather":
input_parallel = gather_forward_reducescatter_backward(
input_parallel, self.process_group, self.seq_parallel_dim
input_parallel, self.process_group, self.seq_parallel_dim, fp8_communication=self.fp8_communication
)
output_parallel = linear_with_async_comm(input_parallel, self.weight, bias, self.process_group, False)
elif self.seq_parallel_mode == "ring":
@ -214,7 +218,9 @@ class Linear1D_Col(ParallelModule):
if self.gather_output:
# All-gather across the partitions.
output = gather_forward_split_backward(output_parallel, dim=-1, process_group=self.process_group)
output = gather_forward_split_backward(
output_parallel, dim=-1, process_group=self.process_group, fp8_communication=self.fp8_communication
)
else:
output = output_parallel
@ -264,6 +270,7 @@ class Linear1D_Row(ParallelModule):
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
stream_chunk_num: int = 1,
fp8_communication: bool = False,
):
super().__init__()
@ -278,6 +285,7 @@ class Linear1D_Row(ParallelModule):
self.seq_parallel_mode = seq_parallel_mode
self.seq_parallel_dim = seq_parallel_dim
self.num_partitions = dist.get_world_size(self.process_group)
self.fp8_communication = fp8_communication
if skip_bias_add and not bias:
raise ValueError("cannot skip bias addition if bias is None")
@ -398,7 +406,9 @@ class Linear1D_Row(ParallelModule):
), "Invalid shapes in Linear1D_Row forward: input={}, weight={}. Expected last dim of input {}.".format(
input_.shape, self.weight.shape, self.weight.shape[-1] * self.num_partitions
)
input_ = split_forward_gather_backward(input_, dim=-1, process_group=self.process_group)
input_ = split_forward_gather_backward(
input_, dim=-1, process_group=self.process_group, fp8_communication=self.fp8_communication
)
if self.stream_chunk_num > 1:
if self.training:
@ -418,11 +428,11 @@ class Linear1D_Row(ParallelModule):
else:
if self.seq_parallel_mode is None:
output_parallel = linear_with_async_comm(input_, self.weight, None, self.process_group, False)
output = reduce_forward(output_parallel, self.process_group)
output = reduce_forward(output_parallel, self.process_group, fp8_communication=self.fp8_communication)
elif self.seq_parallel_mode == "split_gather":
output_parallel = linear_with_async_comm(input_, self.weight, None, self.process_group, False)
output = reducescatter_forward_gather_backward(
output_parallel, self.process_group, self.seq_parallel_dim
output_parallel, self.process_group, self.seq_parallel_dim, fp8_communication=self.fp8_communication
)
elif self.seq_parallel_mode == "ring":
output = linear_reducescatter_forward_gather_backward(

30
colossalai/shardformer/modeling/llama.py

@ -460,7 +460,7 @@ class LlamaPipelineForwards:
return {"hidden_states": hidden_states}
def get_llama_flash_attention_forward(shard_config, sp_mode=None, sp_size=None, sp_group=None):
def get_llama_flash_attention_forward(shard_config: ShardConfig, sp_mode=None, sp_size=None, sp_group=None):
def forward(
self,
hidden_states: torch.Tensor,
@ -510,9 +510,9 @@ def get_llama_flash_attention_forward(shard_config, sp_mode=None, sp_size=None,
# sp: all-to-all comminucation when introducing sequence parallel
if sp_mode == "all_to_all":
query_states = all_to_all_comm(query_states, sp_group)
key_states = all_to_all_comm(key_states, sp_group)
value_states = all_to_all_comm(value_states, sp_group)
query_states = all_to_all_comm(query_states, sp_group, fp8_communication=shard_config.fp8_communication)
key_states = all_to_all_comm(key_states, sp_group, fp8_communication=shard_config.fp8_communication)
value_states = all_to_all_comm(value_states, sp_group, fp8_communication=shard_config.fp8_communication)
bsz, q_len, _ = query_states.size()
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
@ -574,7 +574,9 @@ def get_llama_flash_attention_forward(shard_config, sp_mode=None, sp_size=None,
# sp: all-to-all comminucation when introducing sequence parallel
if sp_mode == "all_to_all":
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim)
attn_output = all_to_all_comm(attn_output, sp_group, scatter_dim=1, gather_dim=2)
attn_output = all_to_all_comm(
attn_output, sp_group, scatter_dim=1, gather_dim=2, fp8_communication=shard_config.fp8_communication
)
else:
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
@ -592,7 +594,7 @@ def get_llama_flash_attention_forward(shard_config, sp_mode=None, sp_size=None,
return forward
def get_llama_flash_attention_model_forward(shard_config, sp_mode=None, sp_size=None, sp_group=None):
def get_llama_flash_attention_model_forward(shard_config: ShardConfig, sp_mode=None, sp_size=None, sp_group=None):
logger = logging.get_logger(__name__)
def forward(
@ -659,9 +661,13 @@ def get_llama_flash_attention_model_forward(shard_config, sp_mode=None, sp_size=
attention_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
if sp_mode in ["ring", "split_gather"]:
inputs_embeds = split_forward_gather_backward(inputs_embeds, 1, sp_group)
inputs_embeds = split_forward_gather_backward(
inputs_embeds, 1, sp_group, fp8_communication=shard_config.fp8_communication
)
elif sp_mode == "all_to_all":
inputs_embeds = split_forward_gather_backward(inputs_embeds, 1, sp_group, 1 / sp_size)
inputs_embeds = split_forward_gather_backward(
inputs_embeds, 1, sp_group, 1 / sp_size, fp8_communication=shard_config.fp8_communication
)
hidden_states = inputs_embeds
# decoder layers
@ -706,9 +712,13 @@ def get_llama_flash_attention_model_forward(shard_config, sp_mode=None, sp_size=
hidden_states = self.norm(hidden_states)
if sp_mode == "ring" or sp_mode == "split_gather":
hidden_states = gather_forward_split_backward(hidden_states, 1, sp_group)
hidden_states = gather_forward_split_backward(
hidden_states, 1, sp_group, fp8_communication=shard_config.fp8_communication
)
elif sp_mode == "all_to_all":
hidden_states = gather_forward_split_backward(hidden_states, 1, sp_group, grad_scale=sp_size)
hidden_states = gather_forward_split_backward(
hidden_states, 1, sp_group, grad_scale=sp_size, fp8_communication=shard_config.fp8_communication
)
# add hidden states from the last decoder layer
if output_hidden_states:

15
colossalai/shardformer/policies/llama.py

@ -65,7 +65,6 @@ class LlamaPolicy(Policy):
norm_cls = FusedRMSNorm
else:
norm_cls = RMSNorm
if self.pipeline_stage_manager is not None:
self.shard_config.enable_sequence_parallelism = False
self.shard_config.enable_sequence_overlap = False
@ -134,37 +133,37 @@ class LlamaPolicy(Policy):
SubModuleReplacementDescription(
suffix="self_attn.q_proj",
target_module=Linear1D_Col,
kwargs=dict(seq_parallel_mode=sp_mode),
kwargs=dict(seq_parallel_mode=sp_mode, fp8_communication=self.shard_config.fp8_communication),
),
SubModuleReplacementDescription(
suffix="self_attn.k_proj",
target_module=Linear1D_Col,
kwargs=dict(seq_parallel_mode=sp_mode),
kwargs=dict(seq_parallel_mode=sp_mode, fp8_communication=self.shard_config.fp8_communication),
),
SubModuleReplacementDescription(
suffix="self_attn.v_proj",
target_module=Linear1D_Col,
kwargs=dict(seq_parallel_mode=sp_mode),
kwargs=dict(seq_parallel_mode=sp_mode, fp8_communication=self.shard_config.fp8_communication),
),
SubModuleReplacementDescription(
suffix="self_attn.o_proj",
target_module=Linear1D_Row,
kwargs=dict(seq_parallel_mode=sp_mode),
kwargs=dict(seq_parallel_mode=sp_mode, fp8_communication=self.shard_config.fp8_communication),
),
SubModuleReplacementDescription(
suffix="mlp.gate_proj",
target_module=Linear1D_Col,
kwargs=dict(seq_parallel_mode=sp_mode),
kwargs=dict(seq_parallel_mode=sp_mode, fp8_communication=self.shard_config.fp8_communication),
),
SubModuleReplacementDescription(
suffix="mlp.up_proj",
target_module=Linear1D_Col,
kwargs=dict(seq_parallel_mode=sp_mode),
kwargs=dict(seq_parallel_mode=sp_mode, fp8_communication=self.shard_config.fp8_communication),
),
SubModuleReplacementDescription(
suffix="mlp.down_proj",
target_module=Linear1D_Row,
kwargs=dict(seq_parallel_mode=sp_mode),
kwargs=dict(seq_parallel_mode=sp_mode, fp8_communication=self.shard_config.fp8_communication),
),
],
)

39
tests/test_fp8/test_fp8_all_to_all.py

@ -0,0 +1,39 @@
import torch
import torch.distributed as dist
from torch.distributed.distributed_c10d import _get_default_group
from torch.testing import assert_close
from colossalai import launch
from colossalai.accelerator import get_accelerator
from colossalai.quantization.fp8 import all_to_all_fp8
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
@parameterize("shape", [(16, 8, 4)])
@parameterize("scatter_dim", [0, 1, 2])
@parameterize("dtype", [torch.bfloat16, torch.float16])
@parameterize("fp8_format", ["e4m3", "e5m2"])
def check_4gpu(shape, scatter_dim, dtype, fp8_format):
world_size = dist.get_world_size()
input_tensor = torch.rand(shape, dtype=dtype, device=get_accelerator().get_current_device())
input_tensor_list = list(torch.chunk(input_tensor, world_size, scatter_dim))
input_tensor_list = [x.contiguous() for x in input_tensor_list]
output_tensor_list_fp8 = [torch.empty_like(x) for x in input_tensor_list]
output_tensor_list = [torch.empty_like(x) for x in input_tensor_list]
all_to_all_fp8(output_tensor_list_fp8, input_tensor_list, group=_get_default_group(), fp8_format=fp8_format)
dist.all_to_all(output_tensor_list, input_tensor_list, group=_get_default_group())
assert_close(output_tensor_list_fp8, output_tensor_list, rtol=0.1, atol=0.1)
def run_dist(rank, world_size, port):
launch(rank=rank, world_size=world_size, port=port, host="localhost")
check_4gpu()
@rerun_if_address_is_in_use()
def test_all_to_all():
spawn(run_dist, 4)
if __name__ == "__main__":
test_all_to_all()

37
tests/test_fp8/test_fp8_all_to_all_single.py

@ -0,0 +1,37 @@
import torch
import torch.distributed as dist
from torch.distributed.distributed_c10d import _get_default_group
from torch.testing import assert_close
from colossalai import launch
from colossalai.accelerator import get_accelerator
from colossalai.quantization.fp8 import all_to_all_single_fp8
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
dist.all_to_all_single
@parameterize("shape", [(4), (8, 7), (4, 8, 16)])
@parameterize("dtype", [torch.bfloat16, torch.float16])
@parameterize("fp8_format", ["e4m3", "e5m2"])
def check_4gpu(shape, dtype, fp8_format):
x = torch.rand(shape, dtype=dtype, device=get_accelerator().get_current_device())
output = torch.empty_like(x)
output_fp8 = torch.empty_like(x)
all_to_all_single_fp8(output_fp8, x, group=_get_default_group(), fp8_format=fp8_format)
dist.all_to_all_single(output, x, group=_get_default_group())
assert_close(output, output_fp8, rtol=0.1, atol=0.1)
def run_dist(rank, world_size, port):
launch(rank=rank, world_size=world_size, port=port, host="localhost")
check_4gpu()
@rerun_if_address_is_in_use()
def test_all_to_all_single():
spawn(run_dist, 4)
if __name__ == "__main__":
test_all_to_all_single()

4
tests/test_fp8/test_fp8_allgather.py → tests/test_fp8/test_fp8_allgather_flat.py

@ -32,9 +32,9 @@ def run_dist(rank, world_size, port):
@rerun_if_address_is_in_use()
def test_all_gather():
def test_all_gather_flat():
spawn(run_dist, 4)
if __name__ == "__main__":
test_all_gather()
test_all_gather_flat()

48
tests/test_fp8/test_fp8_allreduce.py

@ -0,0 +1,48 @@
import torch
import torch.distributed as dist
from torch.testing import assert_close
from colossalai import launch
from colossalai.accelerator import get_accelerator
from colossalai.quantization.fp8 import all_reduce_fp8
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
@parameterize(
"shape",
[
(3, 7),
(4, 7),
(7, 4),
(8, 9),
(3),
(7,),
(8,),
],
)
@parameterize("dtype", [torch.float16, torch.bfloat16])
@parameterize("fp8_format", ["e4m3", "e5m2"])
def check_4gpu(shape, dtype, fp8_format):
x = torch.rand(shape, dtype=dtype, device=get_accelerator().get_current_device())
x_fp8 = x.clone()
dist.all_reduce(x)
all_reduce_fp8(x_fp8, fp8_format=fp8_format)
assert_close(x, x_fp8, rtol=0.1, atol=0.1)
dist.all_reduce(x, op=dist.ReduceOp.AVG)
all_reduce_fp8(x_fp8, op=dist.ReduceOp.AVG, fp8_format=fp8_format)
assert_close(x, x_fp8, rtol=0.1, atol=0.1)
def run_dist(rank, world_size, port):
launch(rank=rank, world_size=world_size, port=port, host="localhost")
check_4gpu()
@rerun_if_address_is_in_use()
def test_all_reduce():
spawn(run_dist, 4)
if __name__ == "__main__":
test_all_reduce()

48
tests/test_fp8/test_fp8_gather.py

@ -0,0 +1,48 @@
import torch
import torch.distributed as dist
from torch.distributed.distributed_c10d import _get_default_group
from torch.testing import assert_close
from colossalai import launch
from colossalai.accelerator import get_accelerator
from colossalai.quantization.fp8 import gather_fp8
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
@parameterize(
"shape",
[
(3, 7),
(2, 1),
(1, 2),
(2, 2),
(4, 2),
(5,),
(4,),
(2,),
],
)
@parameterize("dtype", [torch.bfloat16, torch.float16])
@parameterize("fp8_format", ["e4m3", "e5m2"])
def check_4gpu(shape, dtype, fp8_format):
world_size = dist.get_world_size()
x = torch.rand(shape, dtype=dtype, device=get_accelerator().get_current_device())
output_list = [torch.empty_like(x) for _ in range(world_size)]
output_list_fp8 = [torch.empty_like(x) for _ in range(world_size)]
gather_fp8(output_list_fp8, x, group=_get_default_group(), fp8_format=fp8_format)
dist.all_gather(output_list, x, group=_get_default_group())
assert_close(output_list, output_list_fp8, rtol=0.1, atol=0.1)
def run_dist(rank, world_size, port):
launch(rank=rank, world_size=world_size, port=port, host="localhost")
check_4gpu()
@rerun_if_address_is_in_use()
def test_all_gather():
spawn(run_dist, 4)
if __name__ == "__main__":
test_all_gather()

38
tests/test_fp8/test_fp8_reduce_scatter.py

@ -0,0 +1,38 @@
import torch
from torch.distributed import reduce_scatter
from torch.distributed.distributed_c10d import _get_default_group
from torch.testing import assert_close
from colossalai import launch
from colossalai.accelerator import get_accelerator
from colossalai.quantization.fp8 import reduce_scatter_fp8
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
@parameterize("shape", [(16, 8, 4)])
@parameterize("scatter_dim", [0, 1, 2])
@parameterize("dtype", [torch.bfloat16, torch.float16])
@parameterize("fp8_format", ["e4m3", "e5m2"])
def check_4gpu(shape, scatter_dim, dtype, fp8_format):
x = torch.rand(shape, dtype=dtype, device=get_accelerator().get_current_device())
input_list = list(torch.chunk(x, dim=scatter_dim, chunks=4))
input_list = [t.contiguous() for t in input_list]
output_origin = torch.empty_like(input_list[0])
output_fp8 = torch.empty_like(input_list[0])
reduce_scatter(output_origin, input_list, group=_get_default_group())
reduce_scatter_fp8(output_fp8, input_list, group=_get_default_group(), fp8_format=fp8_format)
assert_close(output_origin, output_fp8, rtol=0.1, atol=0.1)
def run_dist(rank, world_size, port):
launch(rank=rank, world_size=world_size, port=port, host="localhost")
check_4gpu()
@rerun_if_address_is_in_use()
def test_reduce_scatter():
spawn(run_dist, 4)
if __name__ == "__main__":
test_reduce_scatter()
Loading…
Cancel
Save