ColossalAI/colossalai/nn/parallel/data_parallel.py

170 lines
6.7 KiB
Python
Raw Normal View History

import torch
import torch.distributed as dist
from colossalai.core import global_context as gpc
from colossalai.context import ParallelMode
from functools import partial
from colossalai.zero.utils.zero_hook_v2 import ZeROHookV2
from colossalai.tensor.chunk import TensorState, Chunk
from colossalai.tensor.param_op_hook import ParamOpHookManager
from colossalai.gemini.gemini_mgr import GeminiManager
from typing import Dict
from colossalai.logging import get_dist_logger
def free_storage(data: torch.Tensor) -> None:
"""Free underlying storage of a Tensor."""
if data.storage().size() > 0:
# Since we're modifying the Tensor's Storage directly, make sure the Tensor
# is the sole occupant of the Storage.
assert data.storage_offset() == 0
data.storage().resize_(0)
class ColoDDP(torch.nn.Module):
def __init__(self, module: torch.nn.Module) -> None:
super().__init__()
self.module = module
self.comm_stream: torch.cuda.Stream = torch.cuda.Stream()
self.dp_world_size = gpc.get_world_size(ParallelMode.DATA)
for p in module.parameters():
if p.requires_grad:
p.register_hook(partial(self.grad_handle, p))
def parameters(self, recurse: bool = True):
return self.module.parameters(recurse)
def named_parameters(self, prefix: str = '', recurse: bool = True):
return self.module.named_parameters(prefix, recurse)
def forward(self, *args, **kwargs):
self.module.zero_grad(set_to_none=True)
return self.module(*args, **kwargs)
def backward(self, loss: torch.Tensor):
loss.backward()
torch.cuda.current_stream().wait_stream(self.comm_stream)
for p in self.module.parameters():
if p.grad.device.type != "cpu":
p.grad = p._saved_grad
def grad_handle(self, p, grad):
if grad.device.type != "cpu":
empty_grad = torch.empty_like(grad)
free_storage(empty_grad)
if self.dp_world_size > 1:
grad = grad / self.dp_world_size
self.comm_stream.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(self.comm_stream):
group = gpc.get_group(ParallelMode.DATA)
dist.all_reduce(grad, group=group)
ColoDDP._save_grad(p, grad)
grad.record_stream(self.comm_stream)
else:
ColoDDP._save_grad(p, grad)
return empty_grad
else:
group = gpc.get_cpu_group(ParallelMode.DATA)
dist.all_reduce(grad, group=group)
return grad
@staticmethod
def _save_grad(p, grad):
if hasattr(p, '_saved_grad'):
p._saved_grad.add_(grad)
else:
p._saved_grad = grad
def zero_grad(self, set_to_none: bool = False) -> None:
self.module.zero_grad(set_to_none=True)
for p in self.module.parameters():
if getattr(p, '_saved_grad', None) is not None:
if set_to_none:
p._saved_grad = None
else:
if p._saved_grad.grad_fn is not None:
p._saved_grad.detach_()
else:
p._saved_grad.requires_grad_(False)
p._saved_grad.zero_()
class ColoDDPV2(ColoDDP):
def __init__(self, module: torch.nn.Module, gemini_manager: GeminiManager) -> None:
super().__init__(module)
self.gemini_manager = gemini_manager
self.chunk_manager = gemini_manager.chunk_manager
self.param_op_hook = ZeROHookV2(gemini_manager)
self.fp32_params = []
self.overflow_counter = 0
self.grads_device: Dict[torch.Tensor, torch.device] = {}
self.chunk_manager.create_group('fp16_param', force_data_on_cuda=True)
self.chunk_manager.create_group('fp32_param')
# TODO: get param order and filter unused params
for p in module.parameters():
assert p.dtype == torch.half
fp32_p = p.float().detach()
self.chunk_manager.append_tensor(p, 'fp16_param')
self.chunk_manager.append_tensor(fp32_p, 'fp32_param')
self.fp32_params.append(fp32_p)
self.grads_device[p] = self.gemini_manager.default_device
self._logger = get_dist_logger()
def forward(self, *args, **kwargs):
self.module.zero_grad(set_to_none=True)
self.gemini_manager.pre_iter()
with ParamOpHookManager.use_hooks(self.param_op_hook):
outputs = self.module(*args, **kwargs)
self.chunk_manager.exec_lazy_release()
return outputs
def _setup_grads_ptr(self):
for p in self.module.parameters():
if self.chunk_manager.get_chunk(p).is_empty or not p.requires_grad:
p.grad = None
else:
p.grad = p.data
def _post_backward(self):
self.chunk_manager.exec_lazy_release()
self._setup_grads_ptr()
self._logger.info(
f'layout time: {self.gemini_manager._layout_time}, evict time: {self.gemini_manager._evict_time}, PCIE move vol: {self.gemini_manager._cpu_gpu_move_volume}B'
)
self.gemini_manager.post_iter()
def backward(self, loss: torch.Tensor):
with self.param_op_hook.switch_to_backward(), ParamOpHookManager.use_hooks(self.param_op_hook):
loss.backward()
self._post_backward()
def backward_by_grad(self, tensor, grad):
with self.param_op_hook.switch_to_backward(), ParamOpHookManager.use_hooks(self.param_op_hook):
torch.autograd.backward(tensor, grad)
self._post_backward()
def grad_handle(self, p, grad):
empty_grad = torch.empty_like(grad)
free_storage(empty_grad)
with torch._C.DisableTorchFunction():
self.chunk_manager.trans_tensor_state(p, TensorState.READY_FOR_REDUCE)
if self.dp_world_size > 1:
grad = grad / self.dp_world_size
self.chunk_manager.copy_tensor_to_chunk_slice(p, grad)
chunk = self.chunk_manager.get_chunk(p)
reduced = self.chunk_manager.reduce_chunk(chunk)
self.chunk_manager.release_chunk(chunk)
if reduced and not chunk.is_empty:
self.overflow_counter += chunk.has_inf_or_nan
self.chunk_manager.move_chunk(chunk, self.grads_device[p])
return empty_grad
def zero_grad(self, set_to_none: bool = False) -> None:
self.module.zero_grad(set_to_none=True)
def _set_chunk_grad_device(self, chunk: Chunk, device: torch.device) -> None:
for tensor in chunk.get_tensors():
self.grads_device[tensor] = device