mirror of https://github.com/hpcaitech/ColossalAI
[tensor] refactor param op hook (#1097)
* refactor param op hook * add docstr * fix bugpull/1103/head
parent
1e9f9c227f
commit
895c1c5ee7
|
@ -4,8 +4,8 @@ from colossalai.core import global_context as gpc
|
|||
from colossalai.context import ParallelMode
|
||||
from functools import partial
|
||||
from colossalai.zero.utils.zero_hook_v2 import ZeROHookV2
|
||||
from colossalai.tensor.chunk import ChunkManager, TensorState, Chunk
|
||||
from colossalai.tensor.param_op_hook import use_param_op_hooks
|
||||
from colossalai.tensor.chunk import TensorState, Chunk
|
||||
from colossalai.tensor.param_op_hook import ParamOpHookManager
|
||||
from colossalai.gemini.gemini_mgr import GeminiManager
|
||||
from typing import Dict
|
||||
from colossalai.logging import get_dist_logger
|
||||
|
@ -113,7 +113,7 @@ class ColoDDPV2(ColoDDP):
|
|||
def forward(self, *args, **kwargs):
|
||||
self.module.zero_grad(set_to_none=True)
|
||||
self.gemini_manager.pre_iter()
|
||||
with use_param_op_hooks(self.param_op_hook):
|
||||
with ParamOpHookManager.use_hooks(self.param_op_hook):
|
||||
outputs = self.module(*args, **kwargs)
|
||||
self.chunk_manager.exec_lazy_release()
|
||||
return outputs
|
||||
|
@ -134,12 +134,12 @@ class ColoDDPV2(ColoDDP):
|
|||
self.gemini_manager.post_iter()
|
||||
|
||||
def backward(self, loss: torch.Tensor):
|
||||
with self.param_op_hook.switch_to_backward(), use_param_op_hooks(self.param_op_hook):
|
||||
with self.param_op_hook.switch_to_backward(), ParamOpHookManager.use_hooks(self.param_op_hook):
|
||||
loss.backward()
|
||||
self._post_backward()
|
||||
|
||||
def backward_by_grad(self, tensor, grad):
|
||||
with self.param_op_hook.switch_to_backward(), use_param_op_hooks(self.param_op_hook):
|
||||
with self.param_op_hook.switch_to_backward(), ParamOpHookManager.use_hooks(self.param_op_hook):
|
||||
torch.autograd.backward(tensor, grad)
|
||||
self._post_backward()
|
||||
|
||||
|
|
|
@ -5,10 +5,10 @@ from .colo_parameter import ColoParameter
|
|||
from .utils import convert_parameter, named_params_with_colotensor
|
||||
from . import distspec
|
||||
from .dist_spec_mgr import DistSpecManager
|
||||
from .param_op_hook import ParamOpHook, use_param_op_hooks
|
||||
from .param_op_hook import ParamOpHook, ParamOpHookManager
|
||||
from .chunk import ChunkManager, TensorState
|
||||
|
||||
__all__ = [
|
||||
'ColoTensor', 'convert_parameter', 'ComputePattern', 'TensorSpec', 'ParallelAction', 'named_params_with_colotensor',
|
||||
'ColoParameter', 'distspec', 'DistSpecManager', 'ParamOpHook', 'use_param_op_hooks', 'ChunkManager', 'TensorState'
|
||||
'ColoParameter', 'distspec', 'DistSpecManager', 'ParamOpHook', 'ParamOpHookManager', 'ChunkManager', 'TensorState'
|
||||
]
|
||||
|
|
|
@ -3,7 +3,7 @@ from colossalai.tensor.const import TensorType
|
|||
import torch
|
||||
from colossalai.tensor import TensorSpec, distspec
|
||||
from copy import copy
|
||||
from colossalai.tensor.param_op_hook import _ParamOpHookWrapper, PreFwdPostBwd, PostFwdPreBwd
|
||||
from colossalai.tensor.param_op_hook import ParamOpHookManager
|
||||
from typing import Optional
|
||||
|
||||
|
||||
|
@ -48,17 +48,17 @@ class ColoParameter(ColoTensor, torch.nn.Parameter):
|
|||
|
||||
@classmethod
|
||||
def __torch_function__(cls, func, types, args=..., kwargs=None):
|
||||
if len(_ParamOpHookWrapper.hooks) > 0:
|
||||
if ParamOpHookManager.has_hook():
|
||||
if not func.__name__.startswith('__'):
|
||||
params = list(filter(lambda arg: isinstance(arg, ColoParameter), args))
|
||||
if kwargs is not None:
|
||||
params.extend(list(filter(lambda arg: isinstance(arg, ColoParameter), kwargs.values())))
|
||||
if len(params) > 0:
|
||||
with torch._C.DisableTorchFunction():
|
||||
args = PreFwdPostBwd.apply(params, *args)
|
||||
args = ParamOpHookManager.pre_op(params, *args)
|
||||
ret = super().__torch_function__(func, types, args, kwargs)
|
||||
with torch._C.DisableTorchFunction():
|
||||
ret = PostFwdPreBwd.apply(params, ret)
|
||||
ret = ParamOpHookManager.post_op(params, ret)
|
||||
return ret
|
||||
return super().__torch_function__(func, types, args, kwargs)
|
||||
|
||||
|
|
|
@ -1,10 +1,15 @@
|
|||
import torch
|
||||
from contextlib import contextmanager
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import List, Tuple
|
||||
from typing import List, Tuple, Any
|
||||
|
||||
|
||||
class ParamOpHook(ABC):
|
||||
"""Hook which is triggered by each operation when operands contain ColoParameter.
|
||||
To customize it, you must inherit this abstract class, and implement ``pre_forward``,
|
||||
``post_forward``, ``pre_backward`` and ``post_backward``. These four methods take a list
|
||||
of ColoParameter.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def pre_forward(self, params: List[torch.Tensor]) -> None:
|
||||
|
@ -23,25 +28,78 @@ class ParamOpHook(ABC):
|
|||
pass
|
||||
|
||||
|
||||
class _ParamOpHookWrapper:
|
||||
class ParamOpHookManager:
|
||||
"""Manage your param op hooks. It only has static methods.
|
||||
The only static method you should call is ``use_hooks(*hooks)``.
|
||||
"""
|
||||
hooks: Tuple[ParamOpHook, ...] = tuple()
|
||||
|
||||
@staticmethod
|
||||
@contextmanager
|
||||
def use_hooks(*hooks: ParamOpHook):
|
||||
"""Change the param op hooks you use. Nested calling is allowed.
|
||||
|
||||
Example::
|
||||
>>> with ParamOpHookManager.use_hooks(*hooks):
|
||||
>>> do_something()
|
||||
>>> with ParamOpHookManager.use_hooks():
|
||||
>>> // clear hooks
|
||||
>>> do_something()
|
||||
"""
|
||||
try:
|
||||
old_param_op_hooks = ParamOpHookManager.hooks
|
||||
ParamOpHookManager.hooks = hooks
|
||||
yield
|
||||
finally:
|
||||
ParamOpHookManager.hooks = old_param_op_hooks
|
||||
|
||||
@staticmethod
|
||||
def _trigger_pre_forward(params: List[torch.Tensor]) -> None:
|
||||
for hook in ParamOpHookManager.hooks:
|
||||
hook.pre_forward(params)
|
||||
|
||||
@staticmethod
|
||||
def _trigger_post_forward(params: List[torch.Tensor]) -> None:
|
||||
for hook in ParamOpHookManager.hooks:
|
||||
hook.post_forward(params)
|
||||
|
||||
@staticmethod
|
||||
def _trigger_pre_backward(params: List[torch.Tensor]) -> None:
|
||||
for hook in ParamOpHookManager.hooks:
|
||||
hook.pre_backward(params)
|
||||
|
||||
@staticmethod
|
||||
def _trigger_post_backward(params: List[torch.Tensor]) -> None:
|
||||
for hook in ParamOpHookManager.hooks:
|
||||
hook.post_backward(params)
|
||||
|
||||
@staticmethod
|
||||
def pre_op(params: List[torch.Tensor], *args: Any) -> Any:
|
||||
ParamOpHookManager._trigger_pre_forward(params)
|
||||
return PreFwdPostBwd.apply(params, *args)
|
||||
|
||||
@staticmethod
|
||||
def post_op(params: List[torch.Tensor], args: Any) -> Any:
|
||||
ParamOpHookManager._trigger_post_forward(params)
|
||||
return PostFwdPreBwd.apply(params, args)
|
||||
|
||||
@staticmethod
|
||||
def has_hook() -> bool:
|
||||
return len(ParamOpHookManager.hooks) > 0
|
||||
|
||||
|
||||
class PreFwdPostBwd(torch.autograd.Function):
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, params, *args):
|
||||
ctx.params = params
|
||||
for hook in _ParamOpHookWrapper.hooks:
|
||||
hook.pre_forward(ctx.params)
|
||||
if len(args) == 1:
|
||||
return args[0]
|
||||
return args
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, *grads):
|
||||
for hook in _ParamOpHookWrapper.hooks:
|
||||
hook.post_backward(ctx.params)
|
||||
ParamOpHookManager._trigger_post_backward(ctx.params)
|
||||
return (None,) + grads
|
||||
|
||||
|
||||
|
@ -50,22 +108,9 @@ class PostFwdPreBwd(torch.autograd.Function):
|
|||
@staticmethod
|
||||
def forward(ctx, params, args):
|
||||
ctx.params = params
|
||||
for hook in _ParamOpHookWrapper.hooks:
|
||||
hook.post_forward(params)
|
||||
return args
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, *grads):
|
||||
for hook in _ParamOpHookWrapper.hooks:
|
||||
hook.pre_backward(ctx.params)
|
||||
ParamOpHookManager._trigger_pre_backward(ctx.params)
|
||||
return (None,) + grads
|
||||
|
||||
|
||||
@contextmanager
|
||||
def use_param_op_hooks(*hooks: ParamOpHook):
|
||||
try:
|
||||
old_param_op_hooks = _ParamOpHookWrapper.hooks
|
||||
_ParamOpHookWrapper.hooks = hooks
|
||||
yield
|
||||
finally:
|
||||
_ParamOpHookWrapper.hooks = old_param_op_hooks
|
||||
|
|
Loading…
Reference in New Issue