2022-04-14 03:07:29 +00:00
|
|
|
from abc import ABC, abstractmethod
|
2022-04-14 07:50:09 +00:00
|
|
|
from typing import List, Optional
|
2022-04-13 07:00:48 +00:00
|
|
|
import torch
|
|
|
|
from colossalai.utils import get_current_device
|
|
|
|
from colossalai.utils.memory import colo_device_memory_capacity
|
2022-04-19 06:03:21 +00:00
|
|
|
|
2022-04-24 05:08:48 +00:00
|
|
|
from colossalai.gemini.tensor_utils import colo_model_data_tensor_move_inline, colo_tensor_mem_usage
|
|
|
|
from colossalai.gemini.stateful_tensor import StatefulTensor
|
2022-04-19 02:13:08 +00:00
|
|
|
from colossalai.gemini.memory_tracer import MemStatsCollector
|
2022-04-14 03:07:29 +00:00
|
|
|
from typing import Type
|
2022-04-13 07:00:48 +00:00
|
|
|
|
|
|
|
|
2022-04-14 03:07:29 +00:00
|
|
|
class TensorPlacementPolicy(ABC):
|
2022-04-13 07:00:48 +00:00
|
|
|
|
|
|
|
def __init__(self, device: Optional[torch.device], mem_stats_collector: Optional[MemStatsCollector] = None) -> None:
|
|
|
|
self.device: Optional[torch.device] = device
|
|
|
|
self.mem_stats_collector: Optional[MemStatsCollector] = mem_stats_collector
|
|
|
|
|
2022-04-14 03:07:29 +00:00
|
|
|
@abstractmethod
|
2022-04-13 07:00:48 +00:00
|
|
|
def evict_tensors(self, hold_cuda_tensor_list: List[StatefulTensor], **kwargs) -> None:
|
|
|
|
raise NotImplementedError
|
|
|
|
|
|
|
|
|
|
|
|
class CPUTensorPlacementPolicy(TensorPlacementPolicy):
|
|
|
|
|
|
|
|
def __init__(self, mem_stats_collector: Optional[MemStatsCollector] = None) -> None:
|
|
|
|
super().__init__(torch.device('cpu'), mem_stats_collector=mem_stats_collector)
|
|
|
|
|
2022-04-20 03:29:48 +00:00
|
|
|
def evict_tensors(self, hold_cuda_tensor_list: List[StatefulTensor], **kwargs) -> int:
|
|
|
|
volume = 0
|
2022-04-13 07:00:48 +00:00
|
|
|
for t in hold_cuda_tensor_list:
|
|
|
|
colo_model_data_tensor_move_inline(t, self.device)
|
2022-04-20 03:29:48 +00:00
|
|
|
volume += t.payload.numel() * t.payload.element_size()
|
|
|
|
return volume
|
2022-04-13 07:00:48 +00:00
|
|
|
|
|
|
|
|
|
|
|
class CUDATensorPlacementPolicy(TensorPlacementPolicy):
|
|
|
|
|
|
|
|
def __init__(self, mem_stats_collector: Optional[MemStatsCollector] = None) -> None:
|
|
|
|
assert torch.cuda.is_available(), 'Cannot use CUDATensorPlacementPolicy when CUDA is not available'
|
|
|
|
super().__init__(get_current_device(), mem_stats_collector=mem_stats_collector)
|
|
|
|
|
2022-04-20 03:29:48 +00:00
|
|
|
def evict_tensors(self, hold_cuda_tensor_list: List[StatefulTensor], **kwargs) -> int:
|
|
|
|
return 0
|
2022-04-13 07:00:48 +00:00
|
|
|
|
|
|
|
|
|
|
|
class AutoTensorPlacementPolicy(TensorPlacementPolicy):
|
|
|
|
|
|
|
|
def __init__(self, mem_stats_collector: Optional[MemStatsCollector] = None) -> None:
|
|
|
|
super().__init__(None, mem_stats_collector=mem_stats_collector)
|
2022-04-14 04:04:45 +00:00
|
|
|
# model data will use 1-self._warmup_non_model_data_ratio CUDA memory in warmup phase
|
2022-04-16 13:29:31 +00:00
|
|
|
# TODO(ver217): make these args configurable
|
2022-04-14 04:04:45 +00:00
|
|
|
self._warmup_non_model_data_ratio: float = 0.8
|
2022-04-16 13:29:31 +00:00
|
|
|
self._steady_cuda_cap_ratio: float = 0.8
|
2022-04-13 07:00:48 +00:00
|
|
|
|
|
|
|
def evict_tensors(self,
|
|
|
|
hold_cuda_tensor_list: List[StatefulTensor],
|
|
|
|
cuda_demand: int = 0,
|
|
|
|
warmup: bool = True,
|
|
|
|
compute_list: List[StatefulTensor] = [],
|
|
|
|
compute_idx: int = 0,
|
2022-04-20 03:29:48 +00:00
|
|
|
**kwargs) -> int:
|
|
|
|
"""
|
|
|
|
Evict tensors from CUDA device.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
hold_cuda_tensor_list (List[StatefulTensor]): the list of tensor in state of HOLD-like
|
|
|
|
cuda_demand (int, optional): the volume of data needed on cuda device. Defaults to 0.
|
|
|
|
warmup (bool, optional): a flag indicates whether in the phase of warmup. Defaults to True.
|
|
|
|
compute_list (List[StatefulTensor], optional): TODO. Defaults to [].
|
|
|
|
compute_idx (int, optional): the idx of computing device. Defaults to 0.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
RuntimeError:
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
int: the volume of memory that is evicted
|
|
|
|
"""
|
|
|
|
volume = 0
|
2022-04-13 07:00:48 +00:00
|
|
|
cuda_capacity = colo_device_memory_capacity(get_current_device())
|
2022-04-24 09:17:22 +00:00
|
|
|
used_cuda_model_data = StatefulTensor.GST_MGR.total_mem['cuda']
|
2022-04-13 07:00:48 +00:00
|
|
|
if warmup:
|
|
|
|
# We designate a part of CUDA memory for model data in warmup iterations.
|
|
|
|
max_cuda_non_model_data_per_period = cuda_capacity * self._warmup_non_model_data_ratio
|
|
|
|
else:
|
|
|
|
# max non-model-data cuda memory consumption of this sampling moment and the next sampling moment.
|
2022-04-14 04:01:12 +00:00
|
|
|
max_cuda_non_model_data_per_period = self.mem_stats_collector.next_period_non_model_data_usage('cuda')
|
2022-04-16 13:29:31 +00:00
|
|
|
cuda_capacity *= self._steady_cuda_cap_ratio
|
2022-04-13 07:00:48 +00:00
|
|
|
total_cuda_model_data = cuda_capacity - max_cuda_non_model_data_per_period
|
|
|
|
avail_cuda_model_data = total_cuda_model_data - used_cuda_model_data
|
|
|
|
if avail_cuda_model_data < cuda_demand:
|
|
|
|
# Move cuda_demand - avail_cuda_model_data volume of tensors
|
|
|
|
# to_free_cuda_model_data = cuda_demand - avail_cuda_model_data
|
|
|
|
to_free_cuda_model_data = cuda_demand - avail_cuda_model_data
|
|
|
|
freed_cuda_model_data = 0
|
|
|
|
to_free_tensor_list = hold_cuda_tensor_list
|
|
|
|
if not warmup:
|
2022-04-14 04:01:12 +00:00
|
|
|
next_compute_idx = {t: len(compute_list) for t in hold_cuda_tensor_list}
|
2022-04-13 07:00:48 +00:00
|
|
|
for i in range(len(compute_list) - 1, compute_idx, -1):
|
|
|
|
if compute_list[i] in next_compute_idx:
|
|
|
|
next_compute_idx[compute_list[i]] = i
|
|
|
|
next_compute_idx = sorted(next_compute_idx.items(), key=lambda pair: pair[1], reverse=True)
|
|
|
|
to_free_tensor_list = [t for (t, idx) in next_compute_idx]
|
|
|
|
for t in to_free_tensor_list:
|
2022-04-14 07:50:09 +00:00
|
|
|
if freed_cuda_model_data >= to_free_cuda_model_data:
|
2022-04-13 07:00:48 +00:00
|
|
|
break
|
|
|
|
freed_cuda_model_data += colo_tensor_mem_usage(t)[0]
|
|
|
|
colo_model_data_tensor_move_inline(t, torch.device('cpu'))
|
2022-04-20 03:29:48 +00:00
|
|
|
volume += t.payload.numel() * t.payload.element_size()
|
2022-04-13 07:00:48 +00:00
|
|
|
if freed_cuda_model_data < to_free_cuda_model_data:
|
|
|
|
raise RuntimeError(
|
|
|
|
f"Adjust layout failed! No enough CUDA memory! Need {to_free_cuda_model_data}, freed {freed_cuda_model_data}"
|
|
|
|
)
|
|
|
|
|
2022-04-20 03:29:48 +00:00
|
|
|
return volume
|
|
|
|
|
2022-04-13 07:00:48 +00:00
|
|
|
|
2022-04-14 03:07:29 +00:00
|
|
|
class TensorPlacementPolicyFactory:
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def create(policy_name: str) -> Type[TensorPlacementPolicy]:
|
|
|
|
if policy_name == 'cpu':
|
|
|
|
return CPUTensorPlacementPolicy
|
|
|
|
elif policy_name == 'cuda':
|
|
|
|
return CUDATensorPlacementPolicy
|
|
|
|
elif policy_name == 'auto':
|
|
|
|
return AutoTensorPlacementPolicy
|
|
|
|
else:
|
|
|
|
raise TypeError(f"Unknown tensor placement policy {policy_name}")
|