You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_moe/test_moe_zero_optim.py

84 lines
3.1 KiB

import pytest
import torch
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin import LowLevelZeroPlugin
from colossalai.moe.manager import MOE_MANAGER
from colossalai.tensor.moe_tensor.api import is_moe_tensor
from colossalai.testing import rerun_if_address_is_in_use, spawn
from colossalai.testing.random import seed_all
from tests.test_moe.moe_utils import MoeModel, delete_moe_info, loose_close, run_fwd_bwd, sync_local_from_ep
def run_zero_test(local_rank, stage=1):
criterion = torch.nn.CrossEntropyLoss()
MOE_MANAGER.__init__()
MOE_MANAGER.setup(parallel="EP")
moe_model = MoeModel().bfloat16()
moe_optimizer = torch.optim.Adam(moe_model.parameters(), lr=1.0)
moe_plugin = LowLevelZeroPlugin(stage=stage, precision="bf16")
moe_booster = Booster(plugin=moe_plugin)
moe_model, moe_optimizer, _, _, _ = moe_booster.boost(moe_model, moe_optimizer)
MOE_MANAGER.__init__()
MOE_MANAGER.setup(parallel=None)
zero_model = MoeModel().bfloat16()
delete_moe_info(zero_model)
sync_local_from_ep(zero_model, moe_model)
zero_optimizer = torch.optim.Adam(zero_model.parameters(), lr=1.0)
zero_plugin = LowLevelZeroPlugin(stage=stage, precision="bf16")
zero_booster = Booster(plugin=zero_plugin)
zero_model, zero_optimizer, _, _, _ = zero_booster.boost(zero_model, zero_optimizer)
for (moe_name, moe_param), (zero_name, zero_param) in zip(
moe_model.named_parameters(), zero_model.named_parameters()
):
if ".experts." in moe_name:
continue
assert moe_name == zero_name
assert torch.allclose(
moe_param.data, zero_param.data
), f"{moe_name}\ntorch_param {moe_param.data}\nzero_param {zero_param.data}"
for _ in range(1):
data = torch.randn(2, 4).bfloat16().cuda()
label = torch.randint(0, 4, (2,)).cuda()
moe_out = run_fwd_bwd(moe_model, data, label, criterion, moe_optimizer)
zero_out = run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer)
assert torch.allclose(zero_out, moe_out)
moe_optimizer.step()
zero_optimizer.step()
for (moe_name, moe_param), (zero_name, zero_param) in zip(
moe_model.named_parameters(), zero_model.named_parameters()
):
assert moe_name == zero_name
if is_moe_tensor(moe_param):
param_size = moe_param.shape[0]
zero_param = zero_param[local_rank * param_size : (local_rank + 1) * param_size]
loose_close(moe_param.data, zero_param.data, dtype=moe_param.dtype)
moe_optimizer.zero_grad()
zero_optimizer.zero_grad()
def run_dist(rank, world_size, port, stage):
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
seed_all(42 + rank)
run_zero_test(rank, stage=stage)
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [2])
@pytest.mark.parametrize("stage", [1, 2])
@rerun_if_address_is_in_use()
def test_moe_zero_optim(world_size, stage):
spawn(run_dist, world_size, stage=stage)
if __name__ == "__main__":
test_moe_zero_optim(world_size=2, stage=1)