2023-09-11 17:22:56 +00:00
|
|
|
# Adapted from ModelTC https://github.com/ModelTC/lightllm
|
|
|
|
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
|
|
|
try:
|
|
|
|
import triton
|
|
|
|
import triton.language as tl
|
2023-09-19 06:20:26 +00:00
|
|
|
|
2023-09-11 17:22:56 +00:00
|
|
|
HAS_TRITON = True
|
|
|
|
except ImportError:
|
|
|
|
HAS_TRITON = False
|
|
|
|
print("please install triton from https://github.com/openai/triton")
|
|
|
|
|
|
|
|
if HAS_TRITON:
|
|
|
|
|
|
|
|
@triton.jit
|
2023-09-19 06:20:26 +00:00
|
|
|
def _token_attn_1_kernel(
|
|
|
|
Q,
|
|
|
|
K,
|
|
|
|
sm_scale,
|
|
|
|
kv_cache_loc,
|
|
|
|
kv_cache_start_loc,
|
|
|
|
kv_cache_seqlen,
|
|
|
|
max_kv_cache_len,
|
|
|
|
attn_out,
|
|
|
|
kv_cache_loc_b_stride,
|
|
|
|
kv_cache_loc_s_stride,
|
|
|
|
q_batch_stride,
|
|
|
|
q_head_stride,
|
|
|
|
q_head_dim_stride,
|
|
|
|
k_batch_stride,
|
|
|
|
k_head_stride,
|
|
|
|
k_head_dim_stride,
|
|
|
|
attn_head_stride,
|
|
|
|
attn_batch_stride,
|
|
|
|
HEAD_DIM: tl.constexpr,
|
|
|
|
BLOCK_N: tl.constexpr,
|
|
|
|
):
|
2023-09-11 17:22:56 +00:00
|
|
|
current_batch = tl.program_id(0)
|
|
|
|
current_head = tl.program_id(1)
|
|
|
|
start_n = tl.program_id(2)
|
|
|
|
|
|
|
|
offs_d = tl.arange(0, HEAD_DIM)
|
|
|
|
current_batch_seq_len = tl.load(kv_cache_seqlen + current_batch)
|
|
|
|
current_batch_in_all_start_index = tl.load(kv_cache_start_loc + current_batch)
|
|
|
|
|
|
|
|
current_batch_start_index = max_kv_cache_len - current_batch_seq_len
|
|
|
|
current_batch_end_index = max_kv_cache_len
|
|
|
|
|
|
|
|
off_q = current_batch * q_batch_stride + current_head * q_head_stride + offs_d * q_head_dim_stride
|
|
|
|
|
|
|
|
offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
|
|
|
|
|
|
|
|
block_stard_index = start_n * BLOCK_N
|
|
|
|
block_mask = tl.where(block_stard_index < current_batch_seq_len, 1, 0)
|
|
|
|
|
|
|
|
for start_mark in range(0, block_mask, 1):
|
|
|
|
q = tl.load(Q + off_q + start_mark)
|
|
|
|
offs_n_new = current_batch_start_index + offs_n
|
2023-09-19 06:20:26 +00:00
|
|
|
k_loc = tl.load(
|
|
|
|
kv_cache_loc + kv_cache_loc_b_stride * current_batch + kv_cache_loc_s_stride * offs_n_new,
|
|
|
|
mask=offs_n_new < current_batch_end_index,
|
|
|
|
other=0,
|
|
|
|
)
|
2023-09-11 17:22:56 +00:00
|
|
|
off_k = k_loc[:, None] * k_batch_stride + current_head * k_head_stride + offs_d[None, :] * k_head_dim_stride
|
|
|
|
k = tl.load(K + off_k, mask=offs_n_new[:, None] < current_batch_end_index, other=0.0)
|
|
|
|
att_value = tl.sum(q[None, :] * k, 1)
|
|
|
|
att_value *= sm_scale
|
|
|
|
off_o = current_head * attn_head_stride + (current_batch_in_all_start_index + offs_n) * attn_batch_stride
|
|
|
|
tl.store(attn_out + off_o, att_value, mask=offs_n_new < current_batch_end_index)
|
|
|
|
return
|
|
|
|
|
|
|
|
@triton.jit
|
2023-09-19 06:20:26 +00:00
|
|
|
def _token_attn_1_alibi_kernel(
|
|
|
|
Q,
|
|
|
|
K,
|
|
|
|
sm_scale,
|
|
|
|
alibi,
|
|
|
|
kv_cache_loc,
|
|
|
|
kv_cache_start_loc,
|
|
|
|
kv_cache_seqlen,
|
|
|
|
max_kv_cache_len,
|
|
|
|
attn_out,
|
|
|
|
kv_cache_loc_b_stride,
|
|
|
|
kv_cache_loc_s_stride,
|
|
|
|
q_batch_stride,
|
|
|
|
q_head_stride,
|
|
|
|
q_head_dim_stride,
|
|
|
|
k_batch_stride,
|
|
|
|
k_head_stride,
|
|
|
|
k_head_dim_stride,
|
|
|
|
attn_head_stride,
|
|
|
|
attn_batch_stride,
|
|
|
|
HEAD_DIM: tl.constexpr,
|
|
|
|
BLOCK_N: tl.constexpr,
|
|
|
|
):
|
2023-09-11 17:22:56 +00:00
|
|
|
current_batch = tl.program_id(0)
|
|
|
|
current_head = tl.program_id(1)
|
|
|
|
start_n = tl.program_id(2)
|
|
|
|
|
|
|
|
offs_d = tl.arange(0, HEAD_DIM)
|
|
|
|
current_batch_seq_len = tl.load(kv_cache_seqlen + current_batch)
|
|
|
|
current_batch_in_all_start_index = tl.load(kv_cache_start_loc + current_batch)
|
|
|
|
|
|
|
|
current_batch_start_index = max_kv_cache_len - current_batch_seq_len
|
|
|
|
current_batch_end_index = max_kv_cache_len
|
|
|
|
|
|
|
|
off_q = current_batch * q_batch_stride + current_head * q_head_stride + offs_d * q_head_dim_stride
|
|
|
|
|
|
|
|
offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
|
|
|
|
|
|
|
|
block_stard_index = start_n * BLOCK_N
|
|
|
|
block_mask = tl.where(block_stard_index < current_batch_seq_len, 1, 0)
|
|
|
|
|
|
|
|
for start_mark in range(0, block_mask, 1):
|
|
|
|
alibi_m = tl.load(alibi + current_head)
|
|
|
|
q = tl.load(Q + off_q + start_mark)
|
|
|
|
offs_n_new = current_batch_start_index + offs_n
|
2023-09-19 06:20:26 +00:00
|
|
|
k_loc = tl.load(
|
|
|
|
kv_cache_loc + kv_cache_loc_b_stride * current_batch + kv_cache_loc_s_stride * offs_n_new,
|
|
|
|
mask=offs_n_new < current_batch_end_index,
|
|
|
|
other=0,
|
|
|
|
)
|
2023-09-11 17:22:56 +00:00
|
|
|
off_k = k_loc[:, None] * k_batch_stride + current_head * k_head_stride + offs_d[None, :] * k_head_dim_stride
|
|
|
|
k = tl.load(K + off_k, mask=offs_n_new[:, None] < current_batch_end_index, other=0.0)
|
|
|
|
att_value = tl.sum(q[None, :] * k, 1)
|
|
|
|
att_value *= sm_scale
|
|
|
|
att_value -= alibi_m * (current_batch_seq_len - 1 - offs_n)
|
|
|
|
off_o = current_head * attn_head_stride + (current_batch_in_all_start_index + offs_n) * attn_batch_stride
|
|
|
|
tl.store(attn_out + off_o, att_value, mask=offs_n_new < current_batch_end_index)
|
|
|
|
return
|
|
|
|
|
|
|
|
@torch.no_grad()
|
2023-09-19 06:20:26 +00:00
|
|
|
def token_attn_fwd_1(
|
|
|
|
q, k, attn_out, kv_cache_loc, kv_cache_start_loc, kv_cache_seqlen, max_kv_cache_len, alibi=None
|
|
|
|
):
|
2023-09-11 17:22:56 +00:00
|
|
|
BLOCK = 32
|
|
|
|
# shape constraints
|
|
|
|
q_head_dim, k_head_dim = q.shape[-1], k.shape[-1]
|
|
|
|
assert q_head_dim == k_head_dim
|
|
|
|
assert k_head_dim in {16, 32, 64, 128}
|
|
|
|
sm_scale = 1.0 / (k_head_dim**0.5)
|
|
|
|
|
|
|
|
batch, head_num = kv_cache_loc.shape[0], q.shape[1]
|
|
|
|
|
|
|
|
grid = (batch, head_num, triton.cdiv(max_kv_cache_len, BLOCK))
|
|
|
|
|
|
|
|
num_warps = 4 if k_head_dim <= 64 else 8
|
|
|
|
num_warps = 2
|
|
|
|
|
|
|
|
if alibi is not None:
|
|
|
|
_token_attn_1_alibi_kernel[grid](
|
|
|
|
q,
|
|
|
|
k,
|
|
|
|
sm_scale,
|
|
|
|
alibi,
|
|
|
|
kv_cache_loc,
|
|
|
|
kv_cache_start_loc,
|
|
|
|
kv_cache_seqlen,
|
|
|
|
max_kv_cache_len,
|
|
|
|
attn_out,
|
|
|
|
kv_cache_loc.stride(0),
|
|
|
|
kv_cache_loc.stride(1),
|
|
|
|
q.stride(0),
|
|
|
|
q.stride(1),
|
|
|
|
q.stride(2),
|
|
|
|
k.stride(0),
|
|
|
|
k.stride(1),
|
|
|
|
k.stride(2),
|
|
|
|
attn_out.stride(0),
|
|
|
|
attn_out.stride(1),
|
|
|
|
HEAD_DIM=k_head_dim,
|
|
|
|
BLOCK_N=BLOCK,
|
|
|
|
num_warps=num_warps,
|
|
|
|
num_stages=1,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
_token_attn_1_kernel[grid](
|
|
|
|
q,
|
|
|
|
k,
|
|
|
|
sm_scale,
|
|
|
|
kv_cache_loc,
|
|
|
|
kv_cache_start_loc,
|
|
|
|
kv_cache_seqlen,
|
|
|
|
max_kv_cache_len,
|
|
|
|
attn_out,
|
|
|
|
kv_cache_loc.stride(0),
|
|
|
|
kv_cache_loc.stride(1),
|
|
|
|
q.stride(0),
|
|
|
|
q.stride(1),
|
|
|
|
q.stride(2),
|
|
|
|
k.stride(0),
|
|
|
|
k.stride(1),
|
|
|
|
k.stride(2),
|
|
|
|
attn_out.stride(0),
|
|
|
|
attn_out.stride(1),
|
|
|
|
HEAD_DIM=k_head_dim,
|
|
|
|
BLOCK_N=BLOCK,
|
|
|
|
num_warps=num_warps,
|
|
|
|
num_stages=1,
|
|
|
|
)
|
|
|
|
return
|
|
|
|
|
|
|
|
@triton.jit
|
2023-09-19 06:20:26 +00:00
|
|
|
def _token_attn_softmax_fwd(
|
|
|
|
softmax_logics,
|
|
|
|
kv_cache_start_loc,
|
|
|
|
kv_cache_seqlen,
|
|
|
|
softmax_prob_out,
|
|
|
|
logics_head_dim_stride,
|
|
|
|
logics_batch_stride,
|
|
|
|
prob_head_dim_stride,
|
|
|
|
prob_batch_stride,
|
|
|
|
BLOCK_SIZE: tl.constexpr,
|
|
|
|
):
|
2023-09-11 17:22:56 +00:00
|
|
|
current_batch = tl.program_id(0)
|
|
|
|
current_head = tl.program_id(1)
|
|
|
|
|
|
|
|
col_offsets = tl.arange(0, BLOCK_SIZE)
|
|
|
|
current_batch_seq_len = tl.load(kv_cache_seqlen + current_batch)
|
|
|
|
current_batch_in_all_start_index = tl.load(kv_cache_start_loc + current_batch)
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
row = tl.load(
|
|
|
|
softmax_logics
|
|
|
|
+ current_head * logics_head_dim_stride
|
|
|
|
+ (current_batch_in_all_start_index + col_offsets) * logics_batch_stride,
|
|
|
|
mask=col_offsets < current_batch_seq_len,
|
|
|
|
other=-float("inf"),
|
|
|
|
).to(tl.float32)
|
2023-09-11 17:22:56 +00:00
|
|
|
|
|
|
|
row_minus_max = row - tl.max(row, axis=0)
|
|
|
|
numerator = tl.exp(row_minus_max)
|
|
|
|
denominator = tl.sum(numerator, axis=0)
|
|
|
|
softmax_output = numerator / denominator
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
tl.store(
|
|
|
|
softmax_prob_out
|
|
|
|
+ current_head * prob_head_dim_stride
|
|
|
|
+ (current_batch_in_all_start_index + col_offsets) * prob_batch_stride,
|
|
|
|
softmax_output,
|
|
|
|
mask=col_offsets < current_batch_seq_len,
|
|
|
|
)
|
2023-09-11 17:22:56 +00:00
|
|
|
return
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def token_attn_softmax_fwd(softmax_logics, kv_cache_start_loc, kv_cache_seqlen, softmax_prob_out, max_kv_cache_len):
|
|
|
|
BLOCK_SIZE = triton.next_power_of_2(max_kv_cache_len)
|
|
|
|
batch, head_num = kv_cache_start_loc.shape[0], softmax_logics.shape[0]
|
|
|
|
|
|
|
|
num_warps = 4
|
|
|
|
if BLOCK_SIZE >= 2048:
|
|
|
|
num_warps = 8
|
|
|
|
if BLOCK_SIZE >= 4096:
|
|
|
|
num_warps = 16
|
|
|
|
|
|
|
|
_token_attn_softmax_fwd[(batch, head_num)](
|
|
|
|
softmax_logics,
|
|
|
|
kv_cache_start_loc,
|
|
|
|
kv_cache_seqlen,
|
|
|
|
softmax_prob_out,
|
|
|
|
softmax_logics.stride(0),
|
|
|
|
softmax_logics.stride(1),
|
|
|
|
softmax_prob_out.stride(0),
|
|
|
|
softmax_prob_out.stride(1),
|
|
|
|
num_warps=num_warps,
|
|
|
|
BLOCK_SIZE=BLOCK_SIZE,
|
|
|
|
)
|
|
|
|
return
|
|
|
|
|
|
|
|
@triton.jit
|
2023-09-19 06:20:26 +00:00
|
|
|
def _token_attn_2_kernel(
|
|
|
|
Prob,
|
|
|
|
V,
|
|
|
|
attn_out,
|
|
|
|
kv_cache_loc,
|
|
|
|
kv_cache_start_loc,
|
|
|
|
kv_cache_seqlen,
|
|
|
|
max_kv_cache_len,
|
|
|
|
kv_cache_loc_b_stride,
|
|
|
|
kv_cache_loc_s_stride,
|
|
|
|
prob_head_dim_stride,
|
|
|
|
prob_batch_stride,
|
|
|
|
v_batch_stride,
|
|
|
|
v_head_stride,
|
|
|
|
v_head_dim_stride,
|
|
|
|
attn_out_batch_stride,
|
|
|
|
attn_out_head_stride,
|
|
|
|
attn_out_head_dim_stride,
|
|
|
|
HEAD_DIM: tl.constexpr,
|
|
|
|
BLOCK_N: tl.constexpr,
|
|
|
|
):
|
2023-09-11 17:22:56 +00:00
|
|
|
current_batch = tl.program_id(0)
|
|
|
|
current_head = tl.program_id(1)
|
|
|
|
|
|
|
|
offs_n = tl.arange(0, BLOCK_N)
|
|
|
|
offs_d = tl.arange(0, HEAD_DIM)
|
|
|
|
current_batch_seq_len = tl.load(kv_cache_seqlen + current_batch)
|
|
|
|
current_batch_start_index = max_kv_cache_len - current_batch_seq_len
|
|
|
|
current_batch_in_all_start_index = tl.load(kv_cache_start_loc + current_batch)
|
|
|
|
|
|
|
|
v_loc_off = current_batch * kv_cache_loc_b_stride + (current_batch_start_index + offs_n) * kv_cache_loc_s_stride
|
|
|
|
p_offs = current_head * prob_head_dim_stride + (current_batch_in_all_start_index + offs_n) * prob_batch_stride
|
|
|
|
v_offs = current_head * v_head_stride + offs_d[None, :] * v_head_dim_stride
|
|
|
|
|
|
|
|
acc = tl.zeros([HEAD_DIM], dtype=tl.float32)
|
|
|
|
for start_n in range(0, current_batch_seq_len, BLOCK_N):
|
|
|
|
start_n = tl.multiple_of(start_n, BLOCK_N)
|
2023-09-19 06:20:26 +00:00
|
|
|
p_value = tl.load(
|
|
|
|
Prob + p_offs + start_n * kv_cache_loc_s_stride,
|
|
|
|
mask=(start_n + offs_n) < current_batch_seq_len,
|
|
|
|
other=0.0,
|
|
|
|
)
|
|
|
|
v_loc = tl.load(
|
|
|
|
kv_cache_loc + v_loc_off + start_n * kv_cache_loc_s_stride,
|
|
|
|
mask=(start_n + offs_n) < current_batch_seq_len,
|
|
|
|
other=0.0,
|
|
|
|
)
|
|
|
|
v_value = tl.load(
|
|
|
|
V + v_offs + v_loc[:, None] * v_batch_stride,
|
|
|
|
mask=(start_n + offs_n[:, None]) < current_batch_seq_len,
|
|
|
|
other=0.0,
|
|
|
|
)
|
2023-09-11 17:22:56 +00:00
|
|
|
acc += tl.sum(p_value[:, None] * v_value, 0)
|
|
|
|
|
|
|
|
acc = acc.to(tl.float16)
|
2023-09-19 06:20:26 +00:00
|
|
|
off_o = (
|
|
|
|
current_batch * attn_out_batch_stride
|
|
|
|
+ current_head * attn_out_head_stride
|
|
|
|
+ offs_d * attn_out_head_dim_stride
|
|
|
|
)
|
2023-09-11 17:22:56 +00:00
|
|
|
out_ptrs = attn_out + off_o
|
|
|
|
tl.store(out_ptrs, acc)
|
|
|
|
return
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def token_attn_fwd_2(prob, v, attn_out, kv_cache_loc, kv_cache_start_loc, kv_cache_seqlen, max_kv_cache_len):
|
|
|
|
if triton.__version__ >= "2.1.0":
|
|
|
|
BLOCK = 128
|
|
|
|
else:
|
|
|
|
BLOCK = 64
|
|
|
|
batch, head = kv_cache_loc.shape[0], v.shape[1]
|
|
|
|
grid = (batch, head)
|
|
|
|
num_warps = 4
|
|
|
|
dim = v.shape[-1]
|
|
|
|
|
|
|
|
_token_attn_2_kernel[grid](
|
|
|
|
prob,
|
|
|
|
v,
|
|
|
|
attn_out,
|
|
|
|
kv_cache_loc,
|
|
|
|
kv_cache_start_loc,
|
|
|
|
kv_cache_seqlen,
|
|
|
|
max_kv_cache_len,
|
|
|
|
kv_cache_loc.stride(0),
|
|
|
|
kv_cache_loc.stride(1),
|
|
|
|
prob.stride(0),
|
|
|
|
prob.stride(1),
|
|
|
|
v.stride(0),
|
|
|
|
v.stride(1),
|
|
|
|
v.stride(2),
|
|
|
|
attn_out.stride(0),
|
|
|
|
attn_out.stride(1),
|
|
|
|
attn_out.stride(2),
|
|
|
|
HEAD_DIM=dim,
|
|
|
|
BLOCK_N=BLOCK,
|
|
|
|
num_warps=num_warps,
|
|
|
|
num_stages=1,
|
|
|
|
)
|
|
|
|
return
|
|
|
|
|
|
|
|
@torch.no_grad()
|
2023-09-19 06:20:26 +00:00
|
|
|
def token_attention_fwd(
|
|
|
|
q, k, v, attn_out, kv_cache_loc, kv_cache_start_loc, kv_cache_seq_len, max_len_in_batch, alibi=None
|
|
|
|
):
|
2023-09-11 17:22:56 +00:00
|
|
|
head_num = k.shape[1]
|
|
|
|
batch_size = kv_cache_seq_len.shape[0]
|
|
|
|
calcu_shape1 = (batch_size, head_num, k.shape[2])
|
|
|
|
total_token_num = k.shape[0]
|
|
|
|
|
|
|
|
att_m_tensor = torch.empty((head_num, total_token_num), dtype=q.dtype, device="cuda")
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
token_attn_fwd_1(
|
|
|
|
q.view(calcu_shape1),
|
|
|
|
k,
|
|
|
|
att_m_tensor,
|
|
|
|
kv_cache_loc,
|
|
|
|
kv_cache_start_loc,
|
|
|
|
kv_cache_seq_len,
|
|
|
|
max_len_in_batch,
|
|
|
|
alibi=alibi,
|
|
|
|
)
|
2023-09-11 17:22:56 +00:00
|
|
|
|
|
|
|
prob = torch.empty_like(att_m_tensor)
|
|
|
|
|
|
|
|
token_attn_softmax_fwd(att_m_tensor, kv_cache_start_loc, kv_cache_seq_len, prob, max_len_in_batch)
|
|
|
|
att_m_tensor = None
|
2023-09-19 06:20:26 +00:00
|
|
|
token_attn_fwd_2(
|
|
|
|
prob, v, attn_out.view(calcu_shape1), kv_cache_loc, kv_cache_start_loc, kv_cache_seq_len, max_len_in_batch
|
|
|
|
)
|
2023-09-11 17:22:56 +00:00
|
|
|
|
|
|
|
prob = None
|
|
|
|
|
|
|
|
return
|
2023-09-22 03:12:50 +00:00
|
|
|
|
|
|
|
|
|
|
|
class Llama2TokenAttentionForwards:
|
|
|
|
@staticmethod
|
|
|
|
@triton.jit
|
|
|
|
def _fwd_kernel(
|
|
|
|
Logics,
|
|
|
|
V,
|
|
|
|
Out,
|
|
|
|
B_Loc,
|
|
|
|
B_Start_Loc,
|
|
|
|
B_Seqlen,
|
|
|
|
max_input_len,
|
|
|
|
stride_logic_h,
|
|
|
|
stride_logic_bs,
|
|
|
|
stride_vbs,
|
|
|
|
stride_vh,
|
|
|
|
stride_vd,
|
|
|
|
stride_obs,
|
|
|
|
stride_oh,
|
|
|
|
stride_od,
|
|
|
|
stride_b_loc_b,
|
|
|
|
stride_b_loc_s,
|
|
|
|
other_kv_index, # avoid nan information
|
|
|
|
kv_group_num,
|
|
|
|
BLOCK_DMODEL: tl.constexpr,
|
|
|
|
BLOCK_N: tl.constexpr,
|
|
|
|
):
|
|
|
|
cur_batch = tl.program_id(0)
|
|
|
|
cur_head = tl.program_id(1)
|
|
|
|
|
|
|
|
cur_kv_head = cur_head // kv_group_num
|
|
|
|
|
|
|
|
cur_batch_seq_len = tl.load(B_Seqlen + cur_batch)
|
|
|
|
cur_batch_start_loc = tl.load(B_Start_Loc + cur_batch)
|
|
|
|
|
|
|
|
offs_n = tl.arange(0, BLOCK_N)
|
|
|
|
offs_d = tl.arange(0, BLOCK_DMODEL)
|
|
|
|
|
|
|
|
off_v = cur_kv_head * stride_vh + offs_d[None, :] * stride_vd
|
|
|
|
off_b_loc = cur_batch * stride_b_loc_b + (max_input_len - cur_batch_seq_len) * stride_b_loc_s
|
|
|
|
|
|
|
|
v_ptrs = V + off_v
|
|
|
|
|
|
|
|
e_max = float("-inf")
|
|
|
|
e_sum = 0.0
|
|
|
|
acc = tl.zeros([BLOCK_DMODEL], dtype=tl.float32)
|
|
|
|
|
|
|
|
for start_n in range(0, cur_batch_seq_len, BLOCK_N):
|
|
|
|
start_n = tl.multiple_of(start_n, BLOCK_N)
|
|
|
|
v_index = tl.load(
|
|
|
|
B_Loc + off_b_loc + (start_n + offs_n) * stride_b_loc_s,
|
|
|
|
mask=(start_n + offs_n) < cur_batch_seq_len,
|
|
|
|
other=other_kv_index,
|
|
|
|
)
|
|
|
|
|
|
|
|
qk = tl.load(
|
|
|
|
Logics + cur_head * stride_logic_h + (cur_batch_start_loc + start_n + offs_n) * stride_logic_bs,
|
|
|
|
mask=start_n + offs_n < cur_batch_seq_len,
|
|
|
|
other=float("-inf"),
|
|
|
|
)
|
|
|
|
|
|
|
|
n_e_max = tl.maximum(tl.max(qk, 0), e_max)
|
|
|
|
old_scale = tl.exp(e_max - n_e_max)
|
|
|
|
p = tl.exp(qk - n_e_max)
|
|
|
|
e_sum = e_sum * old_scale + tl.sum(p, 0)
|
|
|
|
v = tl.load(v_ptrs + v_index[:, None] * stride_vbs)
|
|
|
|
acc = acc * old_scale + tl.sum(p[:, None] * v, 0)
|
|
|
|
e_max = n_e_max
|
|
|
|
|
|
|
|
acc = acc / e_sum
|
|
|
|
off_o = cur_batch * stride_obs + cur_head * stride_oh + offs_d * stride_od
|
|
|
|
out_ptrs = Out + off_o
|
|
|
|
tl.store(out_ptrs, acc)
|
|
|
|
return
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
@torch.no_grad()
|
|
|
|
def token_softmax_reducev_fwd(logics, v, o, b_loc, b_start_loc, b_seq_len, max_input_len, other_kv_index):
|
|
|
|
BLOCK = 64
|
|
|
|
batch, head = b_seq_len.shape[0], logics.shape[0]
|
|
|
|
grid = (batch, head)
|
|
|
|
kv_group_num = logics.shape[0] // v.shape[1]
|
|
|
|
|
|
|
|
num_warps = 1
|
|
|
|
Llama2TokenAttentionForwards._fwd_kernel[grid](
|
|
|
|
logics,
|
|
|
|
v,
|
|
|
|
o,
|
|
|
|
b_loc,
|
|
|
|
b_start_loc,
|
|
|
|
b_seq_len,
|
|
|
|
max_input_len,
|
|
|
|
logics.stride(0),
|
|
|
|
logics.stride(1),
|
|
|
|
v.stride(0),
|
|
|
|
v.stride(1),
|
|
|
|
v.stride(2),
|
|
|
|
o.stride(0),
|
|
|
|
o.stride(1),
|
|
|
|
o.stride(2),
|
|
|
|
b_loc.stride(0),
|
|
|
|
b_loc.stride(1),
|
|
|
|
other_kv_index,
|
|
|
|
kv_group_num,
|
|
|
|
BLOCK_DMODEL=v.shape[-1],
|
|
|
|
BLOCK_N=BLOCK,
|
|
|
|
num_warps=num_warps,
|
|
|
|
num_stages=3,
|
|
|
|
)
|
|
|
|
return
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
@triton.jit
|
|
|
|
def _fwd_kernel_token_softmax(
|
|
|
|
Logics,
|
|
|
|
B_Start_Loc,
|
|
|
|
B_Seqlen,
|
|
|
|
Prob_Out,
|
|
|
|
stride_logic_h,
|
|
|
|
stride_logic_bs,
|
|
|
|
stride_prob_h,
|
|
|
|
stride_prob_bs,
|
|
|
|
BLOCK_SIZE: tl.constexpr,
|
|
|
|
):
|
|
|
|
cur_batch = tl.program_id(0)
|
|
|
|
cur_head = tl.program_id(1)
|
|
|
|
|
|
|
|
col_offsets = tl.arange(0, BLOCK_SIZE)
|
|
|
|
cur_batch_seq_len = tl.load(B_Seqlen + cur_batch)
|
|
|
|
cur_batch_in_all_start_index = tl.load(B_Start_Loc + cur_batch)
|
|
|
|
|
|
|
|
row = tl.load(
|
|
|
|
Logics + cur_head * stride_logic_h + (cur_batch_in_all_start_index + col_offsets) * stride_logic_bs,
|
|
|
|
mask=col_offsets < cur_batch_seq_len,
|
|
|
|
other=-float("inf"),
|
|
|
|
).to(tl.float32)
|
|
|
|
|
|
|
|
row_minus_max = row - tl.max(row, axis=0)
|
|
|
|
numerator = tl.exp(row_minus_max)
|
|
|
|
denominator = tl.sum(numerator, axis=0)
|
|
|
|
softmax_output = numerator / denominator
|
|
|
|
|
|
|
|
tl.store(
|
|
|
|
Prob_Out + cur_head * stride_prob_h + (cur_batch_in_all_start_index + col_offsets) * stride_prob_bs,
|
|
|
|
softmax_output,
|
|
|
|
mask=col_offsets < cur_batch_seq_len,
|
|
|
|
)
|
|
|
|
return
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
@torch.no_grad()
|
|
|
|
def token_softmax_fwd(Logics, B_Start_Loc, B_Seqlen, Prob_Out, max_input_len):
|
|
|
|
BLOCK_SIZE = triton.next_power_of_2(max_input_len)
|
|
|
|
batch, head_num = B_Start_Loc.shape[0], Logics.shape[0]
|
|
|
|
|
|
|
|
num_warps = 4
|
|
|
|
if BLOCK_SIZE >= 2048:
|
|
|
|
num_warps = 8
|
|
|
|
if BLOCK_SIZE >= 4096:
|
|
|
|
num_warps = 16
|
|
|
|
|
|
|
|
Llama2TokenAttentionForwards._fwd_kernel_token_softmax[(batch, head_num)](
|
|
|
|
Logics,
|
|
|
|
B_Start_Loc,
|
|
|
|
B_Seqlen,
|
|
|
|
Prob_Out,
|
|
|
|
Logics.stride(0),
|
|
|
|
Logics.stride(1),
|
|
|
|
Prob_Out.stride(0),
|
|
|
|
Prob_Out.stride(1),
|
|
|
|
num_warps=num_warps,
|
|
|
|
BLOCK_SIZE=BLOCK_SIZE,
|
|
|
|
)
|
|
|
|
return
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
@triton.jit
|
|
|
|
def _fwd_kernel_token_att1(
|
|
|
|
Q,
|
|
|
|
K,
|
|
|
|
sm_scale,
|
|
|
|
B_Loc,
|
|
|
|
B_Start_Loc,
|
|
|
|
B_Seqlen,
|
|
|
|
max_input_len,
|
|
|
|
Att_Out,
|
|
|
|
stride_b_loc_b,
|
|
|
|
stride_b_loc_s,
|
|
|
|
stride_qbs,
|
|
|
|
stride_qh,
|
|
|
|
stride_qd,
|
|
|
|
stride_kbs,
|
|
|
|
stride_kh,
|
|
|
|
stride_kd,
|
|
|
|
att_stride_h,
|
|
|
|
att_stride_bs,
|
|
|
|
kv_group_num,
|
|
|
|
BLOCK_DMODEL: tl.constexpr,
|
|
|
|
BLOCK_N: tl.constexpr,
|
|
|
|
):
|
|
|
|
cur_batch = tl.program_id(0)
|
|
|
|
cur_head = tl.program_id(1)
|
|
|
|
start_n = tl.program_id(2)
|
|
|
|
|
|
|
|
cur_kv_head = cur_head // kv_group_num
|
|
|
|
|
|
|
|
offs_d = tl.arange(0, BLOCK_DMODEL)
|
|
|
|
cur_batch_seq_len = tl.load(B_Seqlen + cur_batch)
|
|
|
|
cur_batch_in_all_start_index = tl.load(B_Start_Loc + cur_batch)
|
|
|
|
|
|
|
|
cur_batch_start_index = max_input_len - cur_batch_seq_len
|
|
|
|
cur_batch_end_index = max_input_len
|
|
|
|
|
|
|
|
off_q = cur_batch * stride_qbs + cur_head * stride_qh + offs_d * stride_qd
|
|
|
|
|
|
|
|
offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
|
|
|
|
|
|
|
|
block_stard_index = start_n * BLOCK_N
|
|
|
|
block_mask = tl.where(block_stard_index < cur_batch_seq_len, 1, 0)
|
|
|
|
|
|
|
|
for start_mark in range(0, block_mask, 1):
|
|
|
|
q = tl.load(Q + off_q + start_mark)
|
|
|
|
offs_n_new = cur_batch_start_index + offs_n
|
|
|
|
k_loc = tl.load(
|
|
|
|
B_Loc + stride_b_loc_b * cur_batch + stride_b_loc_s * offs_n_new,
|
|
|
|
mask=offs_n_new < cur_batch_end_index,
|
|
|
|
other=0,
|
|
|
|
)
|
|
|
|
off_k = k_loc[:, None] * stride_kbs + cur_kv_head * stride_kh + offs_d[None, :] * stride_kd
|
|
|
|
k = tl.load(K + off_k, mask=offs_n_new[:, None] < cur_batch_end_index, other=0.0)
|
|
|
|
att_value = tl.sum(q[None, :] * k, 1)
|
|
|
|
att_value *= sm_scale
|
|
|
|
off_o = cur_head * att_stride_h + (cur_batch_in_all_start_index + offs_n) * att_stride_bs
|
|
|
|
tl.store(Att_Out + off_o, att_value, mask=offs_n_new < cur_batch_end_index)
|
|
|
|
return
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
@torch.no_grad()
|
|
|
|
def token_att_fwd(q, k, att_out, B_Loc, B_Start_Loc, B_Seqlen, max_input_len):
|
|
|
|
BLOCK = 32
|
|
|
|
# shape constraints
|
|
|
|
Lq, Lk = q.shape[-1], k.shape[-1]
|
|
|
|
assert Lq == Lk
|
|
|
|
assert Lk in {16, 32, 64, 128}
|
|
|
|
sm_scale = 1.0 / (Lk**0.5)
|
|
|
|
|
|
|
|
batch, head_num = B_Loc.shape[0], q.shape[1]
|
|
|
|
|
|
|
|
grid = (batch, head_num, triton.cdiv(max_input_len, BLOCK))
|
|
|
|
kv_group_num = q.shape[1] // k.shape[1]
|
|
|
|
|
|
|
|
num_warps = 4 if Lk <= 64 else 8
|
|
|
|
num_warps = 2
|
|
|
|
|
|
|
|
Llama2TokenAttentionForwards._fwd_kernel_token_att1[grid](
|
|
|
|
q,
|
|
|
|
k,
|
|
|
|
sm_scale,
|
|
|
|
B_Loc,
|
|
|
|
B_Start_Loc,
|
|
|
|
B_Seqlen,
|
|
|
|
max_input_len,
|
|
|
|
att_out,
|
|
|
|
B_Loc.stride(0),
|
|
|
|
B_Loc.stride(1),
|
|
|
|
q.stride(0),
|
|
|
|
q.stride(1),
|
|
|
|
q.stride(2),
|
|
|
|
k.stride(0),
|
|
|
|
k.stride(1),
|
|
|
|
k.stride(2),
|
|
|
|
att_out.stride(0),
|
|
|
|
att_out.stride(1),
|
|
|
|
kv_group_num=kv_group_num,
|
|
|
|
BLOCK_DMODEL=Lk,
|
|
|
|
BLOCK_N=BLOCK,
|
|
|
|
num_warps=num_warps,
|
|
|
|
num_stages=1,
|
|
|
|
)
|
|
|
|
return
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
@triton.jit
|
|
|
|
def _fwd_kernel_token_att2(
|
|
|
|
Prob,
|
|
|
|
V,
|
|
|
|
Out,
|
|
|
|
B_Loc,
|
|
|
|
B_Start_Loc,
|
|
|
|
B_Seqlen,
|
|
|
|
max_input_len, # B_Start_Loc cumsum of input lens if continuous
|
|
|
|
stride_b_loc_b,
|
|
|
|
stride_b_loc_s,
|
|
|
|
stride_ph,
|
|
|
|
stride_pbs,
|
|
|
|
stride_vbs,
|
|
|
|
stride_vh,
|
|
|
|
stride_vd,
|
|
|
|
stride_obs,
|
|
|
|
stride_oh,
|
|
|
|
stride_od,
|
|
|
|
kv_group_num,
|
|
|
|
BLOCK_DMODEL: tl.constexpr,
|
|
|
|
BLOCK_N: tl.constexpr,
|
|
|
|
):
|
|
|
|
cur_batch = tl.program_id(0)
|
|
|
|
cur_head = tl.program_id(1)
|
|
|
|
|
|
|
|
cur_kv_head = cur_head // kv_group_num
|
|
|
|
|
|
|
|
offs_n = tl.arange(0, BLOCK_N)
|
|
|
|
offs_d = tl.arange(0, BLOCK_DMODEL)
|
|
|
|
cur_batch_seq_len = tl.load(B_Seqlen + cur_batch)
|
|
|
|
cur_batch_start_index = max_input_len - cur_batch_seq_len
|
|
|
|
cur_batch_in_all_start_index = tl.load(B_Start_Loc + cur_batch)
|
|
|
|
|
|
|
|
v_loc_off = cur_batch * stride_b_loc_b + (cur_batch_start_index + offs_n) * stride_b_loc_s
|
|
|
|
p_offs = cur_head * stride_ph + (cur_batch_in_all_start_index + offs_n) * stride_pbs
|
|
|
|
v_offs = cur_kv_head * stride_vh + offs_d[None, :] * stride_vd
|
|
|
|
|
|
|
|
acc = tl.zeros([BLOCK_DMODEL], dtype=tl.float32)
|
|
|
|
for start_n in range(0, cur_batch_seq_len, BLOCK_N):
|
|
|
|
start_n = tl.multiple_of(start_n, BLOCK_N)
|
|
|
|
p_value = tl.load(
|
|
|
|
Prob + p_offs + start_n * stride_b_loc_s, mask=(start_n + offs_n) < cur_batch_seq_len, other=0.0
|
|
|
|
)
|
|
|
|
v_loc = tl.load(
|
|
|
|
B_Loc + v_loc_off + start_n * stride_b_loc_s, mask=(start_n + offs_n) < cur_batch_seq_len, other=0.0
|
|
|
|
)
|
|
|
|
v_value = tl.load(
|
|
|
|
V + v_offs + v_loc[:, None] * stride_vbs,
|
|
|
|
mask=(start_n + offs_n[:, None]) < cur_batch_seq_len,
|
|
|
|
other=0.0,
|
|
|
|
)
|
|
|
|
acc += tl.sum(p_value[:, None] * v_value, 0)
|
|
|
|
|
|
|
|
acc = acc.to(tl.float16)
|
|
|
|
off_o = cur_batch * stride_obs + cur_head * stride_oh + offs_d * stride_od
|
|
|
|
out_ptrs = Out + off_o
|
|
|
|
tl.store(out_ptrs, acc)
|
|
|
|
return
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
@torch.no_grad()
|
|
|
|
def token_att_fwd2(prob, v, out, B_Loc, B_Start_Loc, B_Seqlen, max_input_len):
|
|
|
|
if triton.__version__ >= "2.1.0":
|
|
|
|
BLOCK = 128
|
|
|
|
else:
|
|
|
|
BLOCK = 64
|
|
|
|
batch, head = B_Loc.shape[0], prob.shape[0]
|
|
|
|
grid = (batch, head)
|
|
|
|
num_warps = 4
|
|
|
|
dim = v.shape[-1]
|
|
|
|
|
|
|
|
kv_group_num = prob.shape[0] // v.shape[1]
|
|
|
|
|
|
|
|
Llama2TokenAttentionForwards._fwd_kernel_token_att2[grid](
|
|
|
|
prob,
|
|
|
|
v,
|
|
|
|
out,
|
|
|
|
B_Loc,
|
|
|
|
B_Start_Loc,
|
|
|
|
B_Seqlen,
|
|
|
|
max_input_len,
|
|
|
|
B_Loc.stride(0),
|
|
|
|
B_Loc.stride(1),
|
|
|
|
prob.stride(0),
|
|
|
|
prob.stride(1),
|
|
|
|
v.stride(0),
|
|
|
|
v.stride(1),
|
|
|
|
v.stride(2),
|
|
|
|
out.stride(0),
|
|
|
|
out.stride(1),
|
|
|
|
out.stride(2),
|
|
|
|
kv_group_num=kv_group_num,
|
|
|
|
BLOCK_DMODEL=dim,
|
|
|
|
BLOCK_N=BLOCK,
|
|
|
|
num_warps=num_warps,
|
|
|
|
num_stages=1,
|
|
|
|
)
|
|
|
|
return
|
|
|
|
|
|
|
|
# this is the interface of llama2 attn forward
|
|
|
|
@staticmethod
|
|
|
|
@torch.no_grad()
|
|
|
|
def token_attn(
|
|
|
|
q, k, v, attn_out, kv_cache_loc, kv_cache_start_loc, kv_cache_seq_len, max_len_in_batch, other_kv_index
|
|
|
|
):
|
|
|
|
total_token_num = k.shape[0]
|
|
|
|
batch_size, head_num, head_dim = q.shape
|
|
|
|
calcu_shape1 = (batch_size, head_num, head_dim)
|
|
|
|
att_m_tensor = torch.empty((head_num, total_token_num), dtype=q.dtype, device="cuda")
|
|
|
|
|
|
|
|
Llama2TokenAttentionForwards.token_att_fwd(
|
|
|
|
q,
|
|
|
|
k,
|
|
|
|
att_m_tensor,
|
|
|
|
kv_cache_loc,
|
|
|
|
kv_cache_start_loc,
|
|
|
|
kv_cache_seq_len,
|
|
|
|
max_len_in_batch,
|
|
|
|
)
|
|
|
|
|
|
|
|
if triton.__version__ == "2.0.0":
|
|
|
|
prob = torch.empty_like(att_m_tensor)
|
|
|
|
Llama2TokenAttentionForwards.token_softmax_fwd(
|
|
|
|
att_m_tensor, kv_cache_start_loc, kv_cache_seq_len, prob, max_len_in_batch
|
|
|
|
)
|
|
|
|
att_m_tensor = None
|
|
|
|
|
|
|
|
Llama2TokenAttentionForwards.token_att_fwd2(
|
|
|
|
prob,
|
|
|
|
v,
|
|
|
|
attn_out.view(calcu_shape1),
|
|
|
|
kv_cache_loc,
|
|
|
|
kv_cache_start_loc,
|
|
|
|
kv_cache_seq_len,
|
|
|
|
max_len_in_batch,
|
|
|
|
)
|
|
|
|
|
|
|
|
prob = None
|
|
|
|
return
|
|
|
|
|
|
|
|
elif triton.__version__ >= "2.1.0":
|
|
|
|
Llama2TokenAttentionForwards.token_softmax_reducev_fwd(
|
|
|
|
att_m_tensor,
|
|
|
|
v,
|
|
|
|
attn_out.view(calcu_shape1),
|
|
|
|
kv_cache_loc,
|
|
|
|
kv_cache_start_loc,
|
|
|
|
kv_cache_seq_len,
|
|
|
|
max_len_in_batch,
|
|
|
|
other_kv_index,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
raise Exception("not support triton version")
|