ColossalAI/colossalai/gemini/memory_tracer/memstats_collector.py

106 lines
3.9 KiB
Python
Raw Normal View History

import time
from typing import List, Optional
2022-11-07 08:49:03 +00:00
import torch
2022-11-07 08:49:03 +00:00
from colossalai.gemini.memory_tracer import SyncCudaMemoryMonitor
from colossalai.gemini.stateful_tensor import StatefulTensor
from colossalai.utils.memory import colo_device_memory_used
from .memory_stats import MemStats
class MemStatsCollector:
2022-04-01 01:22:33 +00:00
"""
A Memory statistic collector.
It works in two phases.
2022-04-01 01:22:33 +00:00
Phase 1. Collection Phase: collect memory usage statistics of CPU and GPU.
The first iteration of DNN training.
Phase 2. Runtime Phase: use the read-only collected stats
The rest iterations of DNN training.
2022-04-01 01:22:33 +00:00
It has a Sampling counter which is reset after DNN training iteration.
"""
def __init__(self, memstats: Optional[MemStats] = None) -> None:
self._mem_monitor = SyncCudaMemoryMonitor()
self._sampling_time = []
self._start_flag = False
self._step_idx = 0
self._step_total = 0
if memstats is not None:
self.use_outside_memstats = True
self._memstats = memstats
else:
self.use_outside_memstats = False
self._memstats = MemStats()
def next_period_non_model_data_usage(self, device_type: str) -> int:
"""Maximum non model data memory usage during the next Op run
Args:
device_type (str): device type, can be 'cpu' or 'cuda'.
Returns:
int: max non model data memory usage of current sampling period
"""
assert not self._start_flag, 'Cannot get mem stats info during collection phase.'
assert self._step_total > 0, 'Cannot get mem stats info before collection phase.'
assert len(self._memstats.non_model_data_list(device_type)) > self._step_idx, \
f"{len(self._memstats.non_model_data_list(device_type))} should be > than step idx {self._step_idx}, "\
f"step total {self._step_total}"
next_non_model_data = self._memstats.non_model_data_list(device_type)[self._step_idx]
self._step_idx = (self._step_idx + 1) % self._step_total
return next_non_model_data
@property
def sampling_time(self):
return [t - self._sampling_time[0] for t in self._sampling_time]
def start_collection(self):
self._start_flag = True
self._mem_monitor.start()
def finish_collection(self):
self.sample_overall_data()
# self._step_total = len(self._sampling_time)
self._step_total = len(self._memstats.non_model_data_list('cuda'))
self._start_flag = False
self._mem_monitor.finish()
def sample_model_data(self) -> None:
"""Sampling model data statistics.
"""
if self._start_flag and not self.use_outside_memstats:
cuda_mem = StatefulTensor.GST_MGR.total_mem['cuda']
cpu_mem = StatefulTensor.GST_MGR.total_mem['cpu']
self._memstats.append_model_data('cuda', cuda_mem)
self._memstats.append_model_data('cpu', cpu_mem)
def sample_overall_data(self) -> None:
"""Sampling non model data statistics.
"""
if self._start_flag and not self.use_outside_memstats:
# overall data recording is after model data recording
if len(self._memstats._model_data_cuda_list) == 0:
return
self._memstats.append_overall_data('cuda', self._mem_monitor.finish())
self._memstats.append_overall_data('cpu', colo_device_memory_used(torch.device('cpu')))
assert len(self._memstats._model_data_cuda_list) == len(self._memstats._overall_cuda_list)
self._memstats.append_non_model_data('cuda')
self._memstats.append_non_model_data('cpu')
self._mem_monitor.start()
if self._start_flag:
self._sampling_time.append(time.time())
def clear(self) -> None:
self._memstats.clear()
self._start_flag = False
self._step_idx = 0
self._step_total = 0