mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
60 lines
1.7 KiB
60 lines
1.7 KiB
1 year ago
|
# Adapted from ModelTC https://github.com/ModelTC/lightllm
|
||
|
|
||
|
|
||
|
import pytest
|
||
|
import torch
|
||
|
from packaging import version
|
||
|
|
||
|
try:
|
||
|
from colossalai.kernel.triton import int8_rotary_embedding_fwd
|
||
|
|
||
|
HAS_TRITON = True
|
||
|
except ImportError:
|
||
|
HAS_TRITON = False
|
||
|
print("please install triton from https://github.com/openai/triton")
|
||
|
|
||
|
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4")
|
||
|
|
||
|
|
||
|
def torch_rotary_emb(x, cos, sin):
|
||
|
seq_len, h, dim = x.shape
|
||
|
x0 = x[:, :, 0 : dim // 2]
|
||
|
x1 = x[:, :, dim // 2 : dim]
|
||
|
cos = cos.view((seq_len, 1, dim // 2))
|
||
|
sin = sin.view((seq_len, 1, dim // 2))
|
||
|
o0 = x0 * cos - x1 * sin
|
||
|
o1 = x0 * sin + x1 * cos
|
||
|
return torch.cat((o0, o1), dim=-1)
|
||
|
|
||
|
|
||
|
@pytest.mark.skipif(
|
||
|
not TRITON_CUDA_SUPPORT or not HAS_TRITON, reason="triton requires cuda version to be higher than 11.4"
|
||
|
)
|
||
|
def test_rotary_emb():
|
||
|
SEQ_LEN = 1
|
||
|
HEAD_NUM = 32
|
||
|
HEAD_DIM = 128
|
||
|
dtype = torch.float
|
||
|
# create data
|
||
|
x_shape = (SEQ_LEN, HEAD_NUM, HEAD_DIM)
|
||
|
x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device="cuda")
|
||
|
cos_shape = (SEQ_LEN, HEAD_DIM // 2)
|
||
|
cos = -1.2 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
|
||
|
sin = -2.0 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
|
||
|
# forward pass
|
||
|
y_torch = torch_rotary_emb(x, cos, sin)
|
||
|
|
||
|
input_scale = torch.max(torch.abs(x)) / 127
|
||
|
output_scale = torch.max(torch.abs(y_torch)) / 127
|
||
|
|
||
|
x = x / input_scale
|
||
|
x = x.to(torch.int8)
|
||
|
|
||
|
int8_rotary_embedding_fwd(x, cos, sin, input_scale.item(), output_scale.item())
|
||
|
y_triton = x.to(torch.float) * output_scale
|
||
|
assert torch.allclose(y_triton, y_torch, atol=2e-1, rtol=1e-2, equal_nan=True)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
test_rotary_emb()
|