Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

60 lines
1.7 KiB

# Adapted from ModelTC https://github.com/ModelTC/lightllm
import pytest
import torch
from packaging import version
try:
from colossalai.kernel.triton import int8_rotary_embedding_fwd
HAS_TRITON = True
except ImportError:
HAS_TRITON = False
print("please install triton from https://github.com/openai/triton")
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4")
def torch_rotary_emb(x, cos, sin):
seq_len, h, dim = x.shape
x0 = x[:, :, 0 : dim // 2]
x1 = x[:, :, dim // 2 : dim]
cos = cos.view((seq_len, 1, dim // 2))
sin = sin.view((seq_len, 1, dim // 2))
o0 = x0 * cos - x1 * sin
o1 = x0 * sin + x1 * cos
return torch.cat((o0, o1), dim=-1)
@pytest.mark.skipif(
not TRITON_CUDA_SUPPORT or not HAS_TRITON, reason="triton requires cuda version to be higher than 11.4"
)
def test_rotary_emb():
SEQ_LEN = 1
HEAD_NUM = 32
HEAD_DIM = 128
dtype = torch.float
# create data
x_shape = (SEQ_LEN, HEAD_NUM, HEAD_DIM)
x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device="cuda")
cos_shape = (SEQ_LEN, HEAD_DIM // 2)
cos = -1.2 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
sin = -2.0 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
# forward pass
y_torch = torch_rotary_emb(x, cos, sin)
input_scale = torch.max(torch.abs(x)) / 127
output_scale = torch.max(torch.abs(y_torch)) / 127
x = x / input_scale
x = x.to(torch.int8)
int8_rotary_embedding_fwd(x, cos, sin, input_scale.item(), output_scale.item())
y_triton = x.to(torch.float) * output_scale
assert torch.allclose(y_triton, y_torch, atol=2e-1, rtol=1e-2, equal_nan=True)
if __name__ == "__main__":
test_rotary_emb()