# Adapted from ModelTC https://github.com/ModelTC/lightllm import pytest import torch from packaging import version try: from colossalai.kernel.triton import int8_rotary_embedding_fwd HAS_TRITON = True except ImportError: HAS_TRITON = False print("please install triton from https://github.com/openai/triton") TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4") def torch_rotary_emb(x, cos, sin): seq_len, h, dim = x.shape x0 = x[:, :, 0 : dim // 2] x1 = x[:, :, dim // 2 : dim] cos = cos.view((seq_len, 1, dim // 2)) sin = sin.view((seq_len, 1, dim // 2)) o0 = x0 * cos - x1 * sin o1 = x0 * sin + x1 * cos return torch.cat((o0, o1), dim=-1) @pytest.mark.skipif( not TRITON_CUDA_SUPPORT or not HAS_TRITON, reason="triton requires cuda version to be higher than 11.4" ) def test_rotary_emb(): SEQ_LEN = 1 HEAD_NUM = 32 HEAD_DIM = 128 dtype = torch.float # create data x_shape = (SEQ_LEN, HEAD_NUM, HEAD_DIM) x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device="cuda") cos_shape = (SEQ_LEN, HEAD_DIM // 2) cos = -1.2 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda") sin = -2.0 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda") # forward pass y_torch = torch_rotary_emb(x, cos, sin) input_scale = torch.max(torch.abs(x)) / 127 output_scale = torch.max(torch.abs(y_torch)) / 127 x = x / input_scale x = x.to(torch.int8) int8_rotary_embedding_fwd(x, cos, sin, input_scale.item(), output_scale.item()) y_triton = x.to(torch.float) * output_scale assert torch.allclose(y_triton, y_torch, atol=2e-1, rtol=1e-2, equal_nan=True) if __name__ == "__main__": test_rotary_emb()