|
|
|
import torch
|
|
|
|
import torch.distributed as dist
|
|
|
|
from torch.testing import assert_close
|
|
|
|
|
|
|
|
import colossalai
|
|
|
|
from colossalai.shardformer.layer.utils import Randomizer
|
|
|
|
from colossalai.tensor.d_tensor.api import clear_layout_converter
|
|
|
|
from colossalai.testing import parameterize, spawn
|
|
|
|
from tests.kit.model_zoo import model_zoo
|
|
|
|
from tests.test_shardformer.test_model._utils import (
|
|
|
|
build_model_from_hybrid_plugin,
|
|
|
|
check_weight,
|
|
|
|
run_forward_backward_with_hybrid_plugin,
|
|
|
|
unwrap_model,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def check_optim_states(org_optim, sharded_optim):
|
|
|
|
for group in org_optim.param_groups:
|
|
|
|
for p in group["params"]:
|
|
|
|
sharded_state = sharded_optim.state[p]
|
|
|
|
state = org_optim.state[p]
|
|
|
|
for key in sharded_state:
|
|
|
|
assert_close(state[key], sharded_state[key], rtol=1e-5, atol=1e-5)
|
|
|
|
|
|
|
|
|
|
|
|
def check_bert_fwd_bwd(
|
|
|
|
model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config, optim_class, sharded_optim_class
|
|
|
|
):
|
|
|
|
org_model, org_optimizer, sharded_model, sharded_optimizer, criterion, booster = build_model_from_hybrid_plugin(
|
|
|
|
model_fn, loss_fn, test_config, optim_class, sharded_optim_class
|
|
|
|
)
|
|
|
|
|
|
|
|
org_loss, org_output, sharded_loss, sharded_output = run_forward_backward_with_hybrid_plugin(
|
|
|
|
org_model, sharded_model, sharded_optimizer, data_gen_fn, output_transform_fn, criterion, booster
|
|
|
|
)
|
|
|
|
|
|
|
|
stage_manager = booster.plugin.stage_manager
|
|
|
|
tp_group = booster.plugin.tp_group
|
|
|
|
|
|
|
|
bert = unwrap_model(org_model, "BertModel", "bert")
|
|
|
|
sharded_bert = unwrap_model(sharded_model, "BertModel", "bert")
|
|
|
|
weight_layer_for_check = ["encoder.layer[0].output.dense", "encoder.layer[1].output.dense"]
|
|
|
|
|
|
|
|
# optimizer executes step
|
|
|
|
org_optimizer.step()
|
|
|
|
sharded_optimizer.step()
|
|
|
|
|
|
|
|
# check weights
|
|
|
|
if test_config["precision"] == "bf16":
|
|
|
|
atol, rtol = 5e-4, 1e-4
|
|
|
|
else:
|
|
|
|
atol, rtol = 5e-4, 5e-4
|
|
|
|
if stage_manager is None or stage_manager.is_first_stage(ignore_chunk=True):
|
|
|
|
check_weight(bert, sharded_bert, weight_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=1)
|
|
|
|
|
|
|
|
# check optim states
|
|
|
|
check_optim_states(org_optimizer, sharded_optimizer.optim)
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
|
|
|
|
@parameterize(
|
|
|
|
"test_config",
|
|
|
|
[
|
|
|
|
{
|
|
|
|
"tp_size": 1,
|
|
|
|
"num_microbatches": 4,
|
|
|
|
"zero_stage": 2,
|
|
|
|
"precision": "bf16",
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"tp_size": 2,
|
|
|
|
"num_microbatches": 4,
|
|
|
|
"zero_stage": 2,
|
|
|
|
"precision": "bf16",
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"tp_size": 4,
|
|
|
|
"num_microbatches": 4,
|
|
|
|
"zero_stage": 2,
|
|
|
|
"precision": "bf16",
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"tp_size": 1,
|
|
|
|
"num_microbatches": 4,
|
|
|
|
"zero_stage": 2,
|
|
|
|
"precision": "fp16",
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"tp_size": 2,
|
|
|
|
"num_microbatches": 4,
|
|
|
|
"zero_stage": 2,
|
|
|
|
"precision": "fp16",
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"tp_size": 4,
|
|
|
|
"num_microbatches": 4,
|
|
|
|
"zero_stage": 2,
|
|
|
|
"precision": "fp16",
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"tp_size": 2,
|
|
|
|
"num_microbatches": 4,
|
|
|
|
"zero_stage": 1,
|
|
|
|
"precision": "bf16",
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"tp_size": 2,
|
|
|
|
"num_microbatches": 4,
|
|
|
|
"zero_stage": 0,
|
|
|
|
"precision": "bf16",
|
|
|
|
},
|
|
|
|
],
|
|
|
|
)
|
|
|
|
def run_bert_test(test_config, optim_class, sharded_optim_class):
|
|
|
|
"""Only call this if you've initialized distributed backend and spawned processes"""
|
|
|
|
sub_model_zoo = model_zoo.get_sub_registry("transformers_bert")
|
|
|
|
test_config["use_lazy_init"] = False
|
|
|
|
test_config["pp_size"] = 1 # Do NOT test Pipeline Parallel
|
|
|
|
test_config["initial_scale"] = 2**15 # avoid overflow
|
|
|
|
target_models = [
|
|
|
|
"transformers_bert",
|
|
|
|
]
|
|
|
|
|
|
|
|
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
|
|
|
if name in target_models:
|
|
|
|
check_bert_fwd_bwd(
|
|
|
|
model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config, optim_class, sharded_optim_class
|
|
|
|
)
|
|
|
|
|
|
|
|
clear_layout_converter()
|
|
|
|
Randomizer.reset_index()
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
|
|
|
|
def _run_bert_test(rank, world_size, port, optim_class, sharded_optim_class):
|
|
|
|
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
|
|
|
run_bert_test(optim_class, sharded_optim_class)
|
|
|
|
|
|
|
|
|
|
|
|
def check_optim_on_bert(optim_class, sharded_optim_class):
|
|
|
|
spawn(_run_bert_test, 4, optim_class, sharded_optim_class)
|
|
|
|
|
|
|
|
|
|
|
|
def check_dist_optim_state(org_optimizer, sharded_optimizer):
|
|
|
|
torch.set_default_dtype(torch.bfloat16)
|
|
|
|
for group, tp_group in zip(org_optimizer.param_groups, sharded_optimizer.param_groups):
|
|
|
|
for p, tp in zip(group["params"], tp_group["params"]):
|
|
|
|
p_state = org_optimizer.state[p]
|
|
|
|
tp_state = sharded_optimizer.state[tp]
|
|
|
|
# TODO "exp_avg_sq_col", "exp_avg_sq_row", "exp_avg_sq"
|
|
|
|
for key in ["exp_avg_sq_row"]:
|
|
|
|
if key in tp_state.keys() and type(tp_state[key]) is torch.Tensor:
|
|
|
|
tp_is_dtensor = sharded_optimizer.param_is_dtensor_dict[id(tp)]
|
|
|
|
shard_spec = sharded_optimizer.shard_spec_dict[id(tp)]
|
|
|
|
use_zero = sharded_optimizer.use_zero
|
|
|
|
tp_optim_state = tp_state[key]
|
|
|
|
state = p_state[key]
|
|
|
|
|
|
|
|
dp_size, tp_size = (
|
|
|
|
sharded_optimizer.dp_size,
|
|
|
|
sharded_optimizer.tp_size,
|
|
|
|
)
|
|
|
|
# we start init model with first tensor parallel then zero;
|
|
|
|
# So, we gather model with first zero then tensor parallel
|
|
|
|
|
|
|
|
if tp_is_dtensor:
|
|
|
|
# col parallel
|
|
|
|
if shard_spec.sharding_sequence[0] == "R":
|
|
|
|
if use_zero:
|
|
|
|
# sq_row need gather alone dp group
|
|
|
|
# sq_col don't need gather alone dp group
|
|
|
|
if key == "exp_avg_sq_row":
|
|
|
|
state = state.chunk(dp_size, dim=-1)[dist.get_rank(sharded_optimizer.dp_group)]
|
|
|
|
|
|
|
|
# gather from tp group
|
|
|
|
# sq_row don need gather alone tp group
|
|
|
|
# sq_col need gather alone tp group
|
|
|
|
if key == "exp_avg_sq_col":
|
|
|
|
state = state.chunk(tp_size, dim=-1)[dist.get_rank(sharded_optimizer.tp_group)]
|
|
|
|
# row parallel
|
|
|
|
elif shard_spec.sharding_sequence[-1] == "R":
|
|
|
|
# TODO: this case may cause shape mismatch @duanjunwen
|
|
|
|
if use_zero and key == "exp_avg_sq_row" and state.shape[0] // tp_size % dp_size == 0:
|
|
|
|
# sq_row need gather alone dp group
|
|
|
|
# sq_col don't need gather alone dp group
|
|
|
|
|
|
|
|
state = state.chunk(dp_size, dim=-1)[dist.get_rank(sharded_optimizer.dp_group)]
|
|
|
|
|
|
|
|
# gather from tp group
|
|
|
|
# sq_row need gather alone tp group
|
|
|
|
if key == "exp_avg_sq_row":
|
|
|
|
state = state.chunk(tp_size, dim=-1)[dist.get_rank(sharded_optimizer.tp_group)]
|
|
|
|
# sq_col don't need gather alone dp group
|
|
|
|
if key == "exp_avg_sq_col":
|
|
|
|
pass
|
|
|
|
else:
|
|
|
|
return
|
|
|
|
else:
|
|
|
|
if use_zero:
|
|
|
|
# sq_row need gather alone dp group
|
|
|
|
if key == "exp_avg_sq_row":
|
|
|
|
# row residule; no gather
|
|
|
|
if state.shape[0] % dp_size != 0:
|
|
|
|
pass
|
|
|
|
else:
|
|
|
|
state = state.chunk(dp_size, dim=-1)[dist.get_rank(sharded_optimizer.dp_group)]
|
|
|
|
# sq_col don't need gather alone dp group
|
|
|
|
if key == "exp_avg_sq_col":
|
|
|
|
tp_optim_state = tp_optim_state.div_(dp_size)
|
|
|
|
# need a div;
|
|
|
|
|
|
|
|
if state.dtype != tp_optim_state.dtype:
|
|
|
|
tp_optim_state = tp_optim_state.type(state.dtype)
|
|
|
|
# TODO: some sharding checks are currently buggy, but the state values should match
|
|
|
|
# @duanjunwen
|
|
|
|
if state.shape != tp_optim_state.shape:
|
|
|
|
return
|
|
|
|
assert_close(state, tp_optim_state, atol=5e-4, rtol=1.6e-2)
|
|
|
|
|
|
|
|
|
|
|
|
def check_dist_param(org_model, sharded_model, weight_layer_for_check, atol, rtol):
|
|
|
|
for (org_name, org_param), (sharded_name, sharded_param) in zip(
|
|
|
|
org_model.named_parameters(), sharded_model.named_parameters()
|
|
|
|
):
|
|
|
|
if org_name in weight_layer_for_check:
|
|
|
|
assert_close(org_param, sharded_param, atol=atol, rtol=rtol)
|
|
|
|
|
|
|
|
|
|
|
|
def check_dist_grad(sharded_optimizer, org_model, sharded_model, weight_layer_for_check, atol, rtol):
|
|
|
|
for (org_name, org_param), (sharded_name, sharded_param) in zip(
|
|
|
|
org_model.named_parameters(), sharded_model.named_parameters()
|
|
|
|
):
|
|
|
|
if org_name in weight_layer_for_check:
|
|
|
|
org_grad = org_param.grad
|
|
|
|
group_id = dist.get_rank(sharded_optimizer.optim.dp_group)
|
[MoE/ZeRO] Moe refactor with zero refactor (#5821)
* [moe] removed openmoe-coupled code and rectify mixstral code (#5471)
* [Feauture] MoE refractor; Intergration with Mixtral (#5682)
* cherry pick from refractor-moe branch
* tests passed
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* support ep + zero
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* add mixtral auto policy & move pipeline forward code to modeling folder
* [moe refactor] modify kernel test without Route Class
* [moe refactor] add moe tensor test path environment variable to github workflow
* fix typos
* fix moe test bug due to the code rebase
* [moe refactor] fix moe zero test, and little bug in low level zero
* fix typo
* add moe tensor path to github workflow
* remove some useless code
* fix typo & unify global variable XX_AXIS logic without using -1
* fix typo & prettifier the code
* remove print code & support zero 2 test
* remove useless code
* reanme function
* fix typo
* fix typo
* Further improve the test code
* remove print code
* [moe refactor] change test model from fake moe model to mixtral moe layer and remove useless test
* [moe refactor] skip some unit test which will be refactored later
* [moe refactor] fix unit import error
* [moe refactor] fix circular import issues
* [moe refactor] remove debug code
* [moe refactor] update github workflow
* [moe/zero] refactor low level optimizer (#5767)
* [zero] refactor low level optimizer
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Feature] MoE refactor with newest version of ZeRO (#5801)
* [zero] remove redundant members in BucketStore (#5802)
* [zero] align api with previous version
* [Moe/Zero] Update MoeHybridParallelPlugin with refactored ZeRO and Fix Zero bug (#5819)
* [moe refactor] update unit test with the refactored ZeRO and remove useless test
* move moe checkpoint to checkpoint folder and exchange global axis to class member
* update moe hybrid parallel plugin with newest version of zero & fix zero working/master params bug
* fix zero unit test
* Add an assertion to prevent users from using it incorrectly
* [hotfix]Solve the compatibility issue of zero refactor (#5823)
* [moe refactor] update unit test with the refactored ZeRO and remove useless test
* move moe checkpoint to checkpoint folder and exchange global axis to class member
* update moe hybrid parallel plugin with newest version of zero & fix zero working/master params bug
* fix zero unit test
* Add an assertion to prevent users from using it incorrectly
* Modify function parameter names to resolve compatibility issues
* [zero] fix missing hook removal (#5824)
* [MoE] Resolve .github conflict (#5829)
* [Fix/Example] Fix Llama Inference Loading Data Type (#5763)
* [fix/example] fix llama inference loading dtype
* revise loading dtype of benchmark llama3
* [release] update version (#5752)
* [release] update version
* [devops] update compatibility test
* [devops] update compatibility test
* [devops] update compatibility test
* [devops] update compatibility test
* [test] fix ddp plugin test
* [test] fix gptj and rpc test
* [devops] fix cuda ext compatibility
* [inference] fix flash decoding test
* [inference] fix flash decoding test
* fix (#5765)
* [test] Fix/fix testcase (#5770)
* [fix] branch for fix testcase;
* [fix] fix test_analyzer & test_auto_parallel;
* [fix] remove local change about moe;
* [fix] rm local change moe;
* [Hotfix] Add missing init file in inference.executor (#5774)
* [CI/tests] simplify some test case to reduce testing time (#5755)
* [ci/tests] simplify some test case to reduce testing time
* [ci/tests] continue to remove test case to reduce ci time cost
* restore some test config
* [ci/tests] continue to reduce ci time cost
* [misc] update dockerfile (#5776)
* [misc] update dockerfile
* [misc] update dockerfile
* [devops] fix docker ci (#5780)
* [Inference]Add Streaming LLM (#5745)
* Add Streaming LLM
* add some parameters to llama_generation.py
* verify streamingllm config
* add test_streamingllm.py
* modified according to the opinions of review
* add Citation
* change _block_tables tolist
* [hotfix] fix llama flash attention forward (#5777)
* [misc] Accelerate CI for zero and dist optim (#5758)
* remove fp16 from lamb
* remove d2h copy in checking states
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Test/CI] remove test cases to reduce CI duration (#5753)
* [test] smaller gpt2 test case
* [test] reduce test cases: tests/test_zero/test_gemini/test_zeroddp_state_dict.py
* [test] reduce test cases: tests/test_zero/test_gemini/test_grad_accum.py
* [test] reduce test cases tests/test_zero/test_gemini/test_optim.py
* Revert "[test] smaller gpt2 test case"
Some tests might depend on the size of model (num of chunks)
This reverts commit df705a5210b8901645992adf276e320e48766ebf.
* [test] reduce test cases: tests/test_checkpoint_io/test_gemini_checkpoint_io.py
* [CI] smaller test model for two mwo the two modifid cases
* [CI] hardcode gpt model for tests/test_zero/test_gemini/test_search.py since we need a fixed answer there
* [hotfix] fix testcase in test_fx/test_tracer (#5779)
* [fix] branch for fix testcase;
* [fix] fix test_analyzer & test_auto_parallel;
* [fix] remove local change about moe;
* [fix] rm local change moe;
* [fix] fix test_deepfm_model & test_dlrf_model;
* [fix] fix test_hf_albert & test_hf_gpt;
* [gemini] optimize reduce scatter d2h copy (#5760)
* [gemini] optimize reduce scatter d2h copy
* [fix] fix missing reduce variable
* [refactor] remove legacy async reduce scatter code
* [gemini] missing sync
* Revert "[refactor] remove legacy async reduce scatter code"
This reverts commit 58ad76d4665032bbe548d066116d1c572ce98979.
* [gemini] further optimize with async all reduce
* [fix] pass flag from manager to chunk
* Allow building cuda extension without a device. (#5535)
Added FORCE_CUDA environment variable support, to enable building extensions where a GPU device is not present but cuda libraries are.
* [misc] fix dist logger (#5782)
* [install]fix setup (#5786)
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [misc] update requirements (#5787)
* [shardformer] fix import (#5788)
* upgrade colossal-chat support tp_group>1, add sp for sft
* upgrade ppo dpo rm script
* run pre-commit
* moupdate ci tests, st ci test cases passed, tp failed in generation for ppo, sp is buggy
* fix training script
* fix ci
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix transformers version
* remove duplicated test
* fix datasets version
* remove models that require huggingface auth from ci
* remove local data path
* update ci
* remove baichuan from template test due to transformer version conflict
* merge
* Refactor modeling by adding attention backend
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* Fix tests and naming
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* Pass inference model shard configs for module init
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* Clean up
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* replace the customized dataloader setup with the build-in one
* replace the customized dataloader setup with the build-in one
* Remove flash attention backend
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* fix readme
* Fix test import
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* update sft trainning script
* [Inference]refactor baichuan (#5791)
* refactor baichuan
* remove unused code and add TODO for lazyinit
* [test] fix chatglm test kit (#5793)
* [shardformer] fix modeling of bloom and falcon (#5796)
* [test] fix qwen2 pytest distLarge (#5797)
* [Inference] Fix flash-attn import and add model test (#5794)
* Fix torch int32 dtype
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* Fix flash-attn import
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* Add generalized model test
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* Remove exposed path to model
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* Add default value for use_flash_attn
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* Rename model test
Signed-off-by: char-1ee <xingjianli59@gmail.com>
---------
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* [Gemini] Use async stream to prefetch and h2d data moving (#5781)
* use async stream to prefetch and h2d data moving
* Remove redundant code
* [gemini] quick fix on possible async operation (#5803)
* [gemini] quick fix on possible async operation
* [gemini] quick fix on possible async operation
* [shardformer] upgrade transformers to 4.39.3 (#5815)
* [shardformer]upgrade transformers for gpt2/gptj/whisper (#5807)
* [shardformer] fix modeling of gpt2 and gptj
* [shardformer] fix whisper modeling
* [misc] update requirements
---------
Co-authored-by: ver217 <lhx0217@gmail.com>
* [shardformer]upgrade transformers for mistral (#5808)
* upgrade transformers for mistral
* fix
* fix
* [shardformer]upgrade transformers for llama (#5809)
* update transformers
fix
* fix
* fix
* [inference] upgrade transformers (#5810)
* update transformers
fix
* fix
* fix
* fix
* fix
* [gemini] update transformers for gemini (#5814)
---------
Co-authored-by: ver217 <lhx0217@gmail.com>
* Support 4d parallel + flash attention (#5789)
* support tp + sp + pp
* remove comments
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
---------
Signed-off-by: char-1ee <xingjianli59@gmail.com>
Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: flybird11111 <1829166702@qq.com>
Co-authored-by: duanjunwen <935724073@qq.com>
Co-authored-by: yuehuayingxueluo <867460659@qq.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: botbw <wang1570@e.ntu.edu.sg>
Co-authored-by: Charles Coulombe <ccoulombe@users.noreply.github.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: char-1ee <xingjianli59@gmail.com>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
* [zero] fix hook bug
* [zero] add low level optimizer back (#5839)
* [zero] fix param & refactor
* [zero] add back original low level opt
* [zero] remove moe related
* [zero] pass zero tests
* [zero] refactor
* [chore] add del func back
* [zero] comments and naming (#5840)
* [zero] modify api (#5843)
* [zero] modify api
* [test] remove _grad_store access in tests
* [test] fix (#5857)
* [CI] skip openmoe CI check
* [CI] fox pre-commit
* [zero] remove redundant memebr init (#5862)
* [misc] remove useless code, modify the pg mesh implementation
* [misc] remove useless code, modify the pg mesh implementation
* [misc] use tempfile
* resolve conflict with main branch
* [misc] use tempfile in test_moe_checkpoint.py
* [misc] remove useless code, add assertion about sequence parallel, move logger into function
* [misc] remove useless code
---------
Signed-off-by: char-1ee <xingjianli59@gmail.com>
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: botbw <wang1570@e.ntu.edu.sg>
Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: flybird11111 <1829166702@qq.com>
Co-authored-by: duanjunwen <935724073@qq.com>
Co-authored-by: yuehuayingxueluo <867460659@qq.com>
Co-authored-by: Charles Coulombe <ccoulombe@users.noreply.github.com>
Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: char-1ee <xingjianli59@gmail.com>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
5 months ago
|
|
|
dist_grad = sharded_optimizer.get_partitioned_gradients_by_param_id(group_id, id(sharded_param))
|
|
|
|
|
|
|
|
# dist_grad concat then reshape to org_grad shape
|
|
|
|
if dist_grad:
|
|
|
|
dist_grad = torch.cat([t for t in dist_grad], 0).view(org_grad.shape)
|
|
|
|
assert_close(org_grad, dist_grad, atol=atol, rtol=rtol)
|