You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_optimizer/_utils.py

273 lines
11 KiB

[Feature] Distributed optimizers: Lamb, Galore, CAME and Adafactor (#5694) * [feat] Add distributed lamb; minor fixes in DeviceMesh (#5476) * init: add dist lamb; add debiasing for lamb * dist lamb tester mostly done * all tests passed * add comments * all tests passed. Removed debugging statements * moved setup_distributed inside plugin. Added dist layout caching * organize better --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [hotfix] Improve tester precision by removing ZeRO on vanilla lamb (#5576) Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [optim] add distributed came (#5526) * test CAME under LowLevelZeroOptimizer wrapper * test CAME TP row and col pass * test CAME zero pass * came zero add master and worker param id convert * came zero test pass * came zero test pass * test distributed came passed * reform code, Modify some expressions and add comments * minor fix of test came * minor fix of dist_came and test * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * minor fix of dist_came and test * rebase dist-optim * rebase dist-optim * fix remaining comments * add test dist came using booster api --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [optim] Distributed Adafactor (#5484) * [feature] solve conflict; update optimizer readme; * [feature] update optimize readme; * [fix] fix testcase; * [feature] Add transformer-bert to testcase;solve a bug related to indivisible shape (induction in use_zero and tp is row parallel); * [feature] Add transformers_bert model zoo in testcase; * [feature] add user documentation to docs/source/feature. * [feature] add API Reference & Sample to optimizer Readme; add state check for bert exam; * [feature] modify user documentation; * [fix] fix readme format issue; * [fix] add zero=0 in testcase; cached augment in dict; * [fix] fix percision issue; * [feature] add distributed rms; * [feature] remove useless comment in testcase; * [fix] Remove useless test; open zero test; remove fp16 test in bert exam; * [feature] Extract distributed rms function; * [feature] add booster + lowlevelzeroPlugin in test; * [feature] add Start_with_booster_API case in md; add Supporting Information in md; * [fix] Also remove state movement in base adafactor; * [feature] extract factor function; * [feature] add LowLevelZeroPlugin test; * [fix] add tp=False and zero=True in logic; * [fix] fix use zero logic; * [feature] add row residue logic in column parallel factor; * [feature] add check optim state func; * [feature] Remove duplicate logic; * [feature] update optim state check func and percision test bug; * [fix] update/fix optim state; Still exist percision issue; * [fix] Add use_zero check in _rms; Add plugin support info in Readme; Add Dist Adafactor init Info; * [feature] removed print & comments in utils; * [feature] uodate Readme; * [feature] add LowLevelZeroPlugin test with Bert model zoo; * [fix] fix logic in _rms; * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [fix] remove comments in testcase; * [feature] add zh-Han Readme; --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] refractor dist came; fix percision error; add low level zero test with bert model zoo; (#5676) * [feature] daily update; * [fix] fix dist came; * [feature] refractor dist came; fix percision error; add low level zero test with bert model zoo; * [fix] open rms; fix low level zero test; fix dist came test function name; * [fix] remove redundant test; * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] Add Galore (Adam, Adafactor) and distributed GaloreAdamW8bit (#5570) * init: add dist lamb; add debiasing for lamb * dist lamb tester mostly done * all tests passed * add comments * all tests passed. Removed debugging statements * moved setup_distributed inside plugin. Added dist layout caching * organize better * update comments * add initial distributed galore * add initial distributed galore * add galore set param utils; change setup_distributed interface * projected grad precision passed * basic precision tests passed * tests passed; located svd precision issue in fwd-bwd; banned these tests * Plugin DP + TP tests passed * move get_shard_dim to d_tensor * add comments * remove useless files * remove useless files * fix zero typo * improve interface * remove moe changes * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix import * fix deepcopy * update came & adafactor to main * fix param map * fix typo --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Hotfix] Remove one buggy test case from dist_adafactor for now (#5692) Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: chongqichuizi875 <107315010+chongqichuizi875@users.noreply.github.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: duanjunwen <54985467+duanjunwen@users.noreply.github.com> Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
7 months ago
import torch
import torch.distributed as dist
from torch.testing import assert_close
import colossalai
from colossalai.shardformer.layer._operation import _gather
from colossalai.shardformer.layer.utils import Randomizer
from colossalai.tensor.d_tensor.api import clear_layout_converter
from colossalai.testing import parameterize, spawn
from tests.kit.model_zoo import model_zoo
from tests.test_shardformer.test_model._utils import (
build_model_from_hybrid_plugin,
check_weight,
run_forward_backward_with_hybrid_plugin,
unwrap_model,
)
def check_optim_states(org_optim, sharded_optim):
for group in org_optim.param_groups:
for p in group["params"]:
sharded_state = sharded_optim.state[p]
state = org_optim.state[p]
for key in sharded_state:
assert_close(state[key], sharded_state[key], rtol=1e-5, atol=1e-5)
def check_bert_fwd_bwd(
model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config, optim_class, sharded_optim_class
):
org_model, org_optimizer, sharded_model, sharded_optimizer, criterion, booster = build_model_from_hybrid_plugin(
model_fn, loss_fn, test_config, optim_class, sharded_optim_class
)
org_loss, org_output, sharded_loss, sharded_output = run_forward_backward_with_hybrid_plugin(
org_model, sharded_model, sharded_optimizer, data_gen_fn, output_transform_fn, criterion, booster
)
stage_manager = booster.plugin.stage_manager
tp_group = booster.plugin.tp_group
bert = unwrap_model(org_model, "BertModel", "bert")
sharded_bert = unwrap_model(sharded_model, "BertModel", "bert")
weight_layer_for_check = ["encoder.layer[0].output.dense", "encoder.layer[1].output.dense"]
# optimizer executes step
org_optimizer.step()
sharded_optimizer.step()
# check weights
if test_config["precision"] == "bf16":
atol, rtol = 5e-4, 1e-4
else:
atol, rtol = 5e-4, 5e-4
if stage_manager is None or stage_manager.is_first_stage(ignore_chunk=True):
check_weight(bert, sharded_bert, weight_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=1)
# check optim states
check_optim_states(org_optimizer, sharded_optimizer.optim)
torch.cuda.empty_cache()
@parameterize(
"test_config",
[
{
"tp_size": 1,
"num_microbatches": 4,
"zero_stage": 2,
"precision": "bf16",
},
{
"tp_size": 2,
"num_microbatches": 4,
"zero_stage": 2,
"precision": "bf16",
},
{
"tp_size": 4,
"num_microbatches": 4,
"zero_stage": 2,
"precision": "bf16",
},
{
"tp_size": 1,
"num_microbatches": 4,
"zero_stage": 2,
"precision": "fp16",
},
{
"tp_size": 2,
"num_microbatches": 4,
"zero_stage": 2,
"precision": "fp16",
},
{
"tp_size": 4,
"num_microbatches": 4,
"zero_stage": 2,
"precision": "fp16",
},
{
"tp_size": 2,
"num_microbatches": 4,
"zero_stage": 1,
"precision": "bf16",
},
{
"tp_size": 2,
"num_microbatches": 4,
"zero_stage": 0,
"precision": "bf16",
},
],
)
def run_bert_test(test_config, optim_class, sharded_optim_class):
"""Only call this if you've initialized distributed backend and spawned processes"""
sub_model_zoo = model_zoo.get_sub_registry("transformers_bert")
test_config["use_lazy_init"] = False
test_config["pp_size"] = 1 # Do NOT test Pipeline Parallel
test_config["initial_scale"] = 2**15 # avoid overflow
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
check_bert_fwd_bwd(
model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config, optim_class, sharded_optim_class
)
clear_layout_converter()
Randomizer.reset_index()
torch.cuda.empty_cache()
def _run_bert_test(rank, world_size, port, optim_class, sharded_optim_class):
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
run_bert_test(optim_class, sharded_optim_class)
def check_optim_on_bert(optim_class, sharded_optim_class):
spawn(_run_bert_test, 4, optim_class, sharded_optim_class)
def check_dist_optim_state(org_optimizer, sharded_optimizer):
torch.set_default_dtype(torch.bfloat16)
for group, tp_group in zip(org_optimizer.param_groups, sharded_optimizer.param_groups):
for p, tp in zip(group["params"], tp_group["params"]):
p_state = org_optimizer.state[p]
tp_state = sharded_optimizer.state[tp]
# TODO "exp_avg_sq_col", "exp_avg_sq_row", "exp_avg_sq"
for key in ["exp_avg_sq_row"]:
if key in tp_state.keys() and type(tp_state[key]) is torch.Tensor:
tp_is_dtensor = sharded_optimizer.param_is_dtensor_dict[id(tp)]
shard_spec = sharded_optimizer.shard_spec_dict[id(tp)]
use_zero = sharded_optimizer.use_zero
tp_optim_state = tp_state[key]
p_state_shape, tp_state_shape = p_state[key].shape, tp_state[key].shape
dp_size, tp_size = (
sharded_optimizer.dp_size,
sharded_optimizer.tp_size,
)
# we start init model with first tensor parallel then zero;
# So, we gather model with first zero then tensor parallel
if tp_is_dtensor:
# col parallel
if shard_spec.sharding_sequence[0] == "R":
if use_zero:
# sq_row need gather alone dp group
if key == "exp_avg_sq_row":
tp_optim_state = _gather(
input_=tp_optim_state,
dim=-1,
process_group=sharded_optimizer.dp_group,
)
tp_optim_state.shape
# sq_col don't need gather alone dp group
if key == "exp_avg_sq_col":
pass
else:
pass
# gather from tp group
# sq_row don need gather alone tp group
if key == "exp_avg_sq_row":
pass
# sq_col need gather alone dp group
if key == "exp_avg_sq_col":
tp_optim_state = _gather(
input_=tp_optim_state, dim=-1, process_group=sharded_optimizer.tp_group
)
tp_optim_state.shape
# row parallel
if shard_spec.sharding_sequence[-1] == "R":
if use_zero:
# sq_row need gather alone dp group
if key == "exp_avg_sq_row":
if p_state[key].shape[0] // tp_size % dp_size != 0:
pass
else:
tp_optim_state = _gather(
input_=tp_optim_state,
dim=-1,
process_group=sharded_optimizer.dp_group,
)
tp_optim_state.shape
# sq_col don't need gather alone dp group
if key == "exp_avg_sq_col":
pass
else:
pass
# gather from tp group
# sq_row need gather alone tp group
if key == "exp_avg_sq_row":
tp_optim_state = _gather(
input_=tp_optim_state, dim=-1, process_group=sharded_optimizer.tp_group
)
tp_optim_state.shape
# sq_col don't need gather alone dp group
if key == "exp_avg_sq_col":
pass
else:
if use_zero:
# sq_row need gather alone dp group
if key == "exp_avg_sq_row":
# row residule; no gather
if p_state[key].shape[0] % dp_size != 0:
pass
else:
tp_optim_state = _gather(
input_=tp_optim_state,
dim=-1,
process_group=sharded_optimizer.dp_group,
)
tp_optim_state.shape
# sq_col don't need gather alone dp group
if key == "exp_avg_sq_col":
tp_optim_state = tp_optim_state.div_(dp_size)
# need a div;
else:
pass
# Sovled a New issus: different dtype;
# So far, only happen in H100 env;
# Seem torch.set_default_dtype(torch.bfloat16) not act on booster.percision;
# Or assert_close just update to check dtype;
if p_state[key].dtype != tp_optim_state.dtype:
tp_optim_state = tp_optim_state.type(p_state[key].dtype)
try:
assert_close(p_state[key], tp_optim_state, atol=5e-4, rtol=1.6e-2)
except:
pass
def check_dist_param(org_model, sharded_model, weight_layer_for_check, atol, rtol):
for (org_name, org_param), (sharded_name, sharded_param) in zip(
org_model.named_parameters(), sharded_model.named_parameters()
):
if org_name in weight_layer_for_check:
assert_close(org_param, sharded_param, atol=atol, rtol=rtol)
def check_dist_grad(sharded_optimizer, org_model, sharded_model, weight_layer_for_check, atol, rtol):
for (org_name, org_param), (sharded_name, sharded_param) in zip(
org_model.named_parameters(), sharded_model.named_parameters()
):
if org_name in weight_layer_for_check:
org_grad = org_param.grad
group_id = dist.get_rank(sharded_optimizer.optim.dp_group)
dist_grad = sharded_optimizer._grad_store.get_partitioned_gradients_by_param_id(group_id, id(sharded_param))
# dist_grad concat then reshape to org_grad shape
if dist_grad:
dist_grad = torch.cat([t for t in dist_grad], 0).view(org_grad.shape)
assert_close(org_grad, dist_grad, atol=atol, rtol=rtol)