mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
106 lines
3.9 KiB
106 lines
3.9 KiB
2 years ago
|
import pytest
|
||
|
import torch
|
||
|
import torch.distributed as dist
|
||
|
|
||
|
import colossalai
|
||
|
from colossalai.booster import Booster
|
||
|
from colossalai.booster.plugin import ElixirPlugin
|
||
|
from colossalai.nn.optimizer import HybridAdam
|
||
|
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
||
|
from tests.kit.model_zoo import model_zoo
|
||
|
|
||
|
|
||
|
def run_fn(model_fn, data_gen_fn, output_transform_fn):
|
||
|
os_config = dict(initial_scale=64, max_norm=1.0)
|
||
|
plugin = ElixirPlugin(optimizer_config=os_config)
|
||
|
booster = Booster(plugin=plugin)
|
||
|
model = model_fn()
|
||
|
optimizer = HybridAdam(model.parameters(), lr=1e-3)
|
||
|
criterion = lambda x: x.mean()
|
||
|
data = data_gen_fn()
|
||
|
|
||
|
data = {k: v.to('cuda') if torch.is_tensor(v) or 'Tensor' in v.__class__.__name__ else v for k, v in data.items()}
|
||
|
|
||
|
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
|
||
|
|
||
|
output = model(**data)
|
||
|
output = output_transform_fn(output)
|
||
|
output_key = list(output.keys())[0]
|
||
|
loss = criterion(output[output_key])
|
||
|
|
||
|
booster.backward(loss, optimizer)
|
||
|
optimizer.step()
|
||
|
|
||
|
|
||
|
def check_elixir_plugin(early_stop: bool = True):
|
||
|
"""check elixir plugin over model zoo
|
||
|
|
||
|
Args:
|
||
|
early_stop (bool, optional): Whether to stop when getting the first error. Defaults to True.
|
||
|
"""
|
||
|
passed_info = {}
|
||
|
failed_info = {}
|
||
|
|
||
|
for name, (model_fn, data_gen_fn, output_transform_fn, _) in model_zoo.items():
|
||
|
# have not been tested with torchrec
|
||
|
if name.startswith('torchrec'):
|
||
|
continue
|
||
|
|
||
|
# dm_nfnet is not supported because of the skipinit_gain parameter in its NormFreeBlock
|
||
|
# there is `out.mul_(self.skipinit_gain)`, which should be changed to `out *= self.skipinit_gain`
|
||
|
if name in ['timm_dm_nfnet']:
|
||
|
continue
|
||
|
|
||
|
# Elixir stipulate that parameters with gradients should have gradients after the backward pass
|
||
|
# here are some unsupported models
|
||
|
|
||
|
# these models use layer drop
|
||
|
# some randomly selected layers are not used in computations
|
||
|
if name in ['torchaudio_wav2vec2_base', 'torchaudio_hubert_base']:
|
||
|
continue
|
||
|
|
||
|
# because our criterion function is too simple to generate gradients for all parameters
|
||
|
# following models are not supported
|
||
|
# users should provide complete input data to use all parameters
|
||
|
if name in ('diffusers_auto_encoder_kl', 'diffusers_vq_model', 'diffusers_unet2d_model', 'transformers_albert',
|
||
|
'transformers_albert_for_pretraining', 'transformers_bert_for_pretraining',
|
||
|
'transformers_gpt_double_heads', 'transformers_t5', 'transformers_t5_for_conditional_generation',
|
||
|
'transformers_t5_encoder_model'):
|
||
|
continue
|
||
|
|
||
|
# currently, nn.RNN is not supported yet
|
||
|
if name in ('torchaudio_deepspeech', 'torchaudio_wavernn', 'torchaudio_tacotron'):
|
||
|
continue
|
||
|
|
||
|
try:
|
||
|
run_fn(model_fn, data_gen_fn, output_transform_fn)
|
||
|
passed_info[name] = 'passed'
|
||
|
except Exception as e:
|
||
|
failed_info[name] = str(e)
|
||
|
print(f"failed model name: {name}")
|
||
|
if early_stop:
|
||
|
raise e
|
||
|
|
||
|
torch.cuda.empty_cache()
|
||
|
|
||
|
if dist.get_rank() == 0:
|
||
|
print(f'Passed models({len(passed_info)}): {list(passed_info.keys())}\n\n')
|
||
|
print(f'Failed models({len(failed_info)}): {list(failed_info.keys())}\n\n')
|
||
|
assert len(failed_info) == 0, '\n'.join([f'{k}: {v}' for k, v in failed_info.items()])
|
||
|
|
||
|
|
||
|
def run_dist(rank, world_size, port, early_stop: bool = True):
|
||
|
# init dist env
|
||
|
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost')
|
||
|
check_elixir_plugin(early_stop=early_stop)
|
||
|
|
||
|
|
||
|
@pytest.mark.skip(reason="skip this test now")
|
||
|
@rerun_if_address_is_in_use()
|
||
|
def test_elixir_plugin(early_stop: bool = True):
|
||
|
spawn(run_dist, 1, early_stop=early_stop)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
test_elixir_plugin(early_stop=True)
|