import pytest import torch import torch.distributed as dist import colossalai from colossalai.booster import Booster from colossalai.booster.plugin import ElixirPlugin from colossalai.nn.optimizer import HybridAdam from colossalai.testing import rerun_if_address_is_in_use, spawn from tests.kit.model_zoo import model_zoo def run_fn(model_fn, data_gen_fn, output_transform_fn): os_config = dict(initial_scale=64, max_norm=1.0) plugin = ElixirPlugin(optimizer_config=os_config) booster = Booster(plugin=plugin) model = model_fn() optimizer = HybridAdam(model.parameters(), lr=1e-3) criterion = lambda x: x.mean() data = data_gen_fn() data = {k: v.to('cuda') if torch.is_tensor(v) or 'Tensor' in v.__class__.__name__ else v for k, v in data.items()} model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion) output = model(**data) output = output_transform_fn(output) output_key = list(output.keys())[0] loss = criterion(output[output_key]) booster.backward(loss, optimizer) optimizer.step() def check_elixir_plugin(early_stop: bool = True): """check elixir plugin over model zoo Args: early_stop (bool, optional): Whether to stop when getting the first error. Defaults to True. """ passed_info = {} failed_info = {} for name, (model_fn, data_gen_fn, output_transform_fn, _) in model_zoo.items(): # have not been tested with torchrec if name.startswith('torchrec'): continue # dm_nfnet is not supported because of the skipinit_gain parameter in its NormFreeBlock # there is `out.mul_(self.skipinit_gain)`, which should be changed to `out *= self.skipinit_gain` if name in ['timm_dm_nfnet']: continue # Elixir stipulate that parameters with gradients should have gradients after the backward pass # here are some unsupported models # these models use layer drop # some randomly selected layers are not used in computations if name in ['torchaudio_wav2vec2_base', 'torchaudio_hubert_base']: continue # because our criterion function is too simple to generate gradients for all parameters # following models are not supported # users should provide complete input data to use all parameters if name in ('diffusers_auto_encoder_kl', 'diffusers_vq_model', 'diffusers_unet2d_model', 'transformers_albert', 'transformers_albert_for_pretraining', 'transformers_bert_for_pretraining', 'transformers_gpt_double_heads', 'transformers_t5', 'transformers_t5_for_conditional_generation', 'transformers_t5_encoder_model'): continue # currently, nn.RNN is not supported yet if name in ('torchaudio_deepspeech', 'torchaudio_wavernn', 'torchaudio_tacotron'): continue try: run_fn(model_fn, data_gen_fn, output_transform_fn) passed_info[name] = 'passed' except Exception as e: failed_info[name] = str(e) print(f"failed model name: {name}") if early_stop: raise e torch.cuda.empty_cache() if dist.get_rank() == 0: print(f'Passed models({len(passed_info)}): {list(passed_info.keys())}\n\n') print(f'Failed models({len(failed_info)}): {list(failed_info.keys())}\n\n') assert len(failed_info) == 0, '\n'.join([f'{k}: {v}' for k, v in failed_info.items()]) def run_dist(rank, world_size, port, early_stop: bool = True): # init dist env colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost') check_elixir_plugin(early_stop=early_stop) @pytest.mark.skip(reason="skip this test now") @rerun_if_address_is_in_use() def test_elixir_plugin(early_stop: bool = True): spawn(run_dist, 1, early_stop=early_stop) if __name__ == '__main__': test_elixir_plugin(early_stop=True)