You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/applications/Chat/tests/test_checkpoint.py

95 lines
3.0 KiB

import os
import tempfile
from contextlib import nullcontext
import pytest
import torch
import torch.distributed as dist
from coati.models.gpt import GPTActor
from coati.trainer.strategies import ColossalAIStrategy, DDPStrategy
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
from colossalai.nn.optimizer import HybridAdam
from colossalai.testing import rerun_if_address_is_in_use, spawn
GPT_CONFIG = GPT2Config(n_embd=128, n_layer=4, n_head=4)
def get_data(batch_size: int, seq_len: int = 10) -> dict:
input_ids = torch.randint(0, 50257, (batch_size, seq_len), device='cuda')
attention_mask = torch.ones_like(input_ids)
return dict(input_ids=input_ids, attention_mask=attention_mask)
def run_test_checkpoint(strategy):
BATCH_SIZE = 2
if strategy == 'ddp':
strategy = DDPStrategy()
elif strategy == 'colossalai_gemini':
strategy = ColossalAIStrategy(stage=3, placement_policy='cuda', initial_scale=2**5)
elif strategy == 'colossalai_zero2':
strategy = ColossalAIStrategy(stage=2, placement_policy='cuda')
else:
raise ValueError(f'Unsupported strategy "{strategy}"')
with strategy.model_init_context():
actor = GPTActor(config=GPT_CONFIG).cuda()
actor_optim = HybridAdam(actor.parameters())
actor, actor_optim = strategy.prepare((actor, actor_optim))
def run_step():
data = get_data(BATCH_SIZE)
action_mask = torch.ones_like(data['attention_mask'], dtype=torch.bool)
action_log_probs = actor(data['input_ids'], action_mask.size(1), data['attention_mask'])
loss = action_log_probs.sum()
strategy.backward(loss, actor, actor_optim)
strategy.optimizer_step(actor_optim)
run_step()
ctx = tempfile.TemporaryDirectory() if dist.get_rank() == 0 else nullcontext()
with ctx as dirname:
rank0_dirname = [dirname]
dist.broadcast_object_list(rank0_dirname)
rank0_dirname = rank0_dirname[0]
model_path = os.path.join(rank0_dirname, 'model.pt')
optim_path = os.path.join(rank0_dirname, f'optim-r{dist.get_rank()}.pt')
strategy.save_model(actor, model_path, only_rank0=True)
strategy.save_optimizer(actor_optim, optim_path, only_rank0=False)
dist.barrier()
strategy.load_model(actor, model_path, strict=False)
strategy.load_optimizer(actor_optim, optim_path)
dist.barrier()
run_step()
def run_dist(rank, world_size, port, strategy):
os.environ['RANK'] = str(rank)
os.environ['LOCAL_RANK'] = str(rank)
os.environ['WORLD_SIZE'] = str(world_size)
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = str(port)
run_test_checkpoint(strategy)
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [2])
@pytest.mark.parametrize('strategy', ['ddp', 'colossalai_zero2', 'colossalai_gemini'])
@rerun_if_address_is_in_use()
def test_checkpoint(world_size, strategy):
spawn(run_dist, world_size, strategy=strategy)
if __name__ == '__main__':
test_checkpoint(2, 'colossalai_zero2')