|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
import transformers
|
|
|
|
|
|
|
|
import colossalai
|
|
|
|
from colossalai.accelerator import get_accelerator
|
|
|
|
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
|
|
|
from colossalai.zero.gemini.chunk import init_chunk_manager, search_chunk_configuration
|
|
|
|
|
|
|
|
CONFIG = transformers.GPT2Config(
|
|
|
|
n_layer=2,
|
|
|
|
n_head=4,
|
|
|
|
n_embd=128,
|
|
|
|
vocab_size=50258,
|
|
|
|
attn_pdrop=0,
|
|
|
|
embd_pdrop=0,
|
|
|
|
resid_pdrop=0,
|
|
|
|
summary_first_dropout=0,
|
|
|
|
hidden_dropout=0,
|
|
|
|
problem_type="single_label_classification",
|
|
|
|
pad_token_id=50256,
|
|
|
|
tie_word_embeddings=True,
|
|
|
|
)
|
|
|
|
|
|
|
|
model_builder = lambda: transformers.GPT2LMHeadModel(CONFIG)
|
|
|
|
|
|
|
|
|
|
|
|
def exam_search_chunk_size():
|
|
|
|
# make sure torch_model and model has the same parameter values
|
|
|
|
model = model_builder()
|
|
|
|
config_dict, *_ = search_chunk_configuration(
|
|
|
|
model, search_range_m=1, search_interval=128, min_chunk_size_m=0, filter_exlarge_params=True
|
|
|
|
)
|
|
|
|
|
|
|
|
for key in config_dict:
|
|
|
|
chunk_size = config_dict[key]["chunk_size"]
|
|
|
|
assert chunk_size == 527872
|
|
|
|
|
|
|
|
|
|
|
|
def exam_chunk_manager():
|
|
|
|
world_size = torch.distributed.get_world_size()
|
|
|
|
|
|
|
|
sharded_ddp_model = model_builder()
|
|
|
|
chunk_manager = init_chunk_manager(
|
|
|
|
sharded_ddp_model,
|
|
|
|
get_accelerator().get_current_device(),
|
|
|
|
hidden_dim=128,
|
|
|
|
search_range_m=1,
|
|
|
|
min_chunk_size_m=0,
|
|
|
|
filter_exlarge_params=True,
|
|
|
|
strict_ddp_flag=True,
|
|
|
|
)
|
|
|
|
config_dict = chunk_manager.dp_degree_chunk_size_dict
|
|
|
|
assert len(config_dict) == 1
|
|
|
|
assert config_dict[world_size] == 527872
|
|
|
|
|
|
|
|
|
|
|
|
def run_dist(rank, world_size, port):
|
|
|
|
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
|
|
|
exam_search_chunk_size()
|
|
|
|
exam_chunk_manager()
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.dist
|
|
|
|
@pytest.mark.parametrize("world_size", [1, 4])
|
|
|
|
@rerun_if_address_is_in_use()
|
|
|
|
def test_search(world_size):
|
|
|
|
spawn(run_dist, world_size)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
test_search(4)
|