import pytest import torch import transformers import colossalai from colossalai.accelerator import get_accelerator from colossalai.testing import rerun_if_address_is_in_use, spawn from colossalai.zero.gemini.chunk import init_chunk_manager, search_chunk_configuration CONFIG = transformers.GPT2Config( n_layer=2, n_head=4, n_embd=128, vocab_size=50258, attn_pdrop=0, embd_pdrop=0, resid_pdrop=0, summary_first_dropout=0, hidden_dropout=0, problem_type="single_label_classification", pad_token_id=50256, tie_word_embeddings=True, ) model_builder = lambda: transformers.GPT2LMHeadModel(CONFIG) def exam_search_chunk_size(): # make sure torch_model and model has the same parameter values model = model_builder() config_dict, *_ = search_chunk_configuration( model, search_range_m=1, search_interval=128, min_chunk_size_m=0, filter_exlarge_params=True ) for key in config_dict: chunk_size = config_dict[key]["chunk_size"] assert chunk_size == 527872 def exam_chunk_manager(): world_size = torch.distributed.get_world_size() sharded_ddp_model = model_builder() chunk_manager = init_chunk_manager( sharded_ddp_model, get_accelerator().get_current_device(), hidden_dim=128, search_range_m=1, min_chunk_size_m=0, filter_exlarge_params=True, strict_ddp_flag=True, ) config_dict = chunk_manager.dp_degree_chunk_size_dict assert len(config_dict) == 1 assert config_dict[world_size] == 527872 def run_dist(rank, world_size, port): colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") exam_search_chunk_size() exam_chunk_manager() @pytest.mark.dist @pytest.mark.parametrize("world_size", [1, 4]) @rerun_if_address_is_in_use() def test_search(world_size): spawn(run_dist, world_size) if __name__ == "__main__": test_search(4)