mirror of https://github.com/THUDM/ChatGLM-6B
72 lines
2.2 KiB
Python
72 lines
2.2 KiB
Python
import streamlit as st
|
||
from streamlit_chat import message
|
||
import requests
|
||
import json
|
||
|
||
st.set_page_config(
|
||
page_title="ChatGLM-6b 演示",
|
||
page_icon=":robot:"
|
||
)
|
||
|
||
MAX_TURNS = 20
|
||
MAX_BOXES = MAX_TURNS * 2
|
||
url = "http://localhost:8000/stream_chat"
|
||
|
||
|
||
def predict(input, max_length, top_p, temperature, history=None):
|
||
if history is None:
|
||
history = []
|
||
|
||
with container:
|
||
if len(history) > 0:
|
||
for i, (query, response) in enumerate(history):
|
||
message(query, avatar_style="big-smile", key=str(i) + "_user")
|
||
message(response, avatar_style="bottts", key=str(i))
|
||
|
||
message(input, avatar_style="big-smile", key=str(len(history)) + "_user")
|
||
st.write("AI正在回复:")
|
||
with st.empty():
|
||
req = {
|
||
"prompt": input,
|
||
"history": history,
|
||
"max_length": max_length,
|
||
"top_p": top_p,
|
||
"temperature": temperature
|
||
}
|
||
res = requests.post(url=url,json=req,stream=True)
|
||
for line in res.iter_lines(delimiter=b'\ndata: '):
|
||
line = line.decode(encoding='utf-8')
|
||
if line.strip() == '':
|
||
continue;
|
||
response_json = json.loads(json.loads(line))
|
||
response = response_json['response']
|
||
history = response_json['history']
|
||
st.write(response)
|
||
|
||
return history
|
||
|
||
|
||
container = st.container()
|
||
|
||
# create a prompt text for the text generation
|
||
prompt_text = st.text_area(label="用户命令输入",
|
||
height = 100,
|
||
placeholder="请在这儿输入您的命令")
|
||
|
||
max_length = st.sidebar.slider(
|
||
'max_length', 0, 4096, 2048, step=1
|
||
)
|
||
top_p = st.sidebar.slider(
|
||
'top_p', 0.0, 1.0, 0.6, step=0.01
|
||
)
|
||
temperature = st.sidebar.slider(
|
||
'temperature', 0.0, 1.0, 0.95, step=0.01
|
||
)
|
||
|
||
if 'state' not in st.session_state:
|
||
st.session_state['state'] = []
|
||
|
||
if st.button("发送", key="predict"):
|
||
with st.spinner("AI正在思考,请稍等........"):
|
||
# text generation
|
||
st.session_state["state"] = predict(prompt_text, max_length, top_p, temperature, st.session_state["state"]) |