ChatGLM-6B/demo_and_api/web_demo_streamlit_with_api.py

72 lines
2.2 KiB
Python
Raw Normal View History

import streamlit as st
from streamlit_chat import message
import requests
import json
st.set_page_config(
page_title="ChatGLM-6b 演示",
page_icon=":robot:"
)
MAX_TURNS = 20
MAX_BOXES = MAX_TURNS * 2
url = "http://localhost:8000/stream_chat"
def predict(input, max_length, top_p, temperature, history=None):
if history is None:
history = []
with container:
if len(history) > 0:
for i, (query, response) in enumerate(history):
message(query, avatar_style="big-smile", key=str(i) + "_user")
message(response, avatar_style="bottts", key=str(i))
message(input, avatar_style="big-smile", key=str(len(history)) + "_user")
st.write("AI正在回复:")
with st.empty():
req = {
"prompt": input,
"history": history,
"max_length": max_length,
"top_p": top_p,
"temperature": temperature
}
res = requests.post(url=url,json=req,stream=True)
for line in res.iter_lines(delimiter=b'\ndata: '):
line = line.decode(encoding='utf-8')
if line.strip() == '':
continue;
response_json = json.loads(json.loads(line))
response = response_json['response']
history = response_json['history']
st.write(response)
return history
container = st.container()
# create a prompt text for the text generation
prompt_text = st.text_area(label="用户命令输入",
height = 100,
placeholder="请在这儿输入您的命令")
max_length = st.sidebar.slider(
'max_length', 0, 4096, 2048, step=1
)
top_p = st.sidebar.slider(
'top_p', 0.0, 1.0, 0.6, step=0.01
)
temperature = st.sidebar.slider(
'temperature', 0.0, 1.0, 0.95, step=0.01
)
if 'state' not in st.session_state:
st.session_state['state'] = []
if st.button("发送", key="predict"):
with st.spinner("AI正在思考请稍等........"):
# text generation
2023-04-07 03:19:43 +00:00
st.session_state["state"] = predict(prompt_text, max_length, top_p, temperature, st.session_state["state"])