duzx16
c6294ab3fd
|
2 years ago | |
---|---|---|
.. | ||
README.md | 2 years ago | |
README_en.md | 2 years ago | |
arguments.py | 2 years ago | |
deepspeed.json | 2 years ago | |
ds_train_finetune.sh | 2 years ago | |
evaluate.sh | 2 years ago | |
main.py | 2 years ago | |
train.sh | 2 years ago | |
train_chat.sh | 2 years ago | |
trainer.py | 2 years ago | |
trainer_seq2seq.py | 2 years ago |
README_en.md
ChatGLM-6B-PT
This repository implements tuning of the ChatGLM-6B model based on P-Tuning v2. P-Tuning v2 reduces the amount of parameters that need to be optimized to 0.1% of the full fine-tuning, and then through model quantization, Gradient Checkpoint and other methods, it only needs a minimum of 7GB of video memory to run.
The following uses the ADGEN (advertising generation) dataset as an example to introduce how to use the code.
Software dependencies
Running p-tuning requires version 4.27.1 of transformers
. In addition to the dependencies of ChatGLM-6B, the following dependencies are required
pip install rouge_chinese nltk jieba datasets
Instructions
Download the dataset
The task of the ADGEN dataset is to generate an advertisement word (summary) based on the input (content).
{
"content": "类型#上衣*版型#宽松*版型#显瘦*图案#线条*衣样式#衬衫*衣袖型#泡泡袖*衣款式#抽绳",
"summary": "这件衬衫的款式非常的宽松,利落的线条可以很好的隐藏身材上的小缺点,穿在身上有着很好的显瘦效果。领口装饰了一个可爱的抽绳,漂亮的绳结展现出了十足的个性,配合时尚的泡泡袖型,尽显女性甜美可爱的气息。"
}
From Google Drive or Tsinghua Cloud Download the processed ADGEN dataset, and put the decompressed AdvertiseGen
directory into this directory.
Training
Run the following commands for training:
bash train.sh
PRE_SEQ_LEN
and LR
in train.sh
are soft prompt length and training learning rate respectively, which can be adjusted to achieve the best results. The P-Tuning-v2 method will freeze all model parameters, and the quantization level of the original model can be adjusted by adjusting quantization_bit
. If this option is not added, it will be loaded with FP16 precision.
Under the default configuration of per_device_train_batch_size=1
, gradient_accumulation_steps=16
, the model parameters of INT4 are frozen, and a training iteration will perform 16 cumulative forward and backward propagations with a batch size of 1, which is equivalent to the total batch size of 16, and only 6.7G GPU memory is required at this time with quantization_bit=4
. If you want to improve the training efficiency under the same batch size, you can increase the value of per_device_train_batch_size
while keeping the product of the two unchanged, but it will also bring more GPU memory consumption, please adjust it according to the actual situation.
Inference
Change CHECKPOINT
in evaluate.sh
to the checkpoint name saved during training, and run the following commands for model inference and evaluation:
bash evaluate.sh
The evaluation indicators are Chinese Rouge score and BLEU-4. The generated results are saved in
./output/adgen-chatglm-6b-pt-8-1e-2/generated_predictions.txt
.
Example
Example 1
- Input: 类型#上衣*材质#牛仔布*颜色#白色*风格#简约*图案#刺绣*衣样式#外套*衣款式#破洞
- Label: 简约而不简单的牛仔外套,白色的衣身十分百搭。衣身多处有做旧破洞设计,打破单调乏味,增加一丝造型看点。衣身后背处有趣味刺绣装饰,丰富层次感,彰显别样时尚。
- Output[微调前]: 这件上衣的材质是牛仔布,颜色是白色,风格是简约,图案是刺绣,衣样式是外套,衣款式是破洞。
- Output[微调后]: 这是一款简约的牛仔外套,破洞设计,将牛仔布破洞,带来一种随意与个性。破洞的牛仔外套,展现出时尚气息,带来一种休闲感。同时,刺绣图案,让整件外套更加立体。
Example 2
- Input: 类型#裙*版型#显瘦*风格#文艺*风格#简约*图案#印花*图案#撞色*裙下摆#压褶*裙长#连衣裙*裙领型#圆领
- Label: 文艺个性的印花连衣裙,藏青色底蕴,低调又大气,撞色太阳花分布整个裙身,绚丽而美好,带来时尚减龄的气质。基础款的舒适圆领,简约不失大方,勾勒精致脸庞。领后是一粒包布扣固定,穿脱十分方便。前片立体的打褶设计,搭配后片压褶的做工,增添层次和空间感,显瘦又有型。
- Output[微调前]: 类型#裙版型#显瘦风格#文艺风格#简约图案#印花图案#撞色裙下摆#压褶裙长#连衣裙裙领型#圆领 1. 连衣裙:简约风格,裙长为膝盖以上,裙领型为圆领。2. 裙下摆:压褶设计,使裙摆呈现出流畅的褶皱效果。3. 裙领型:裙领型为圆领,使穿上连衣裙后更加有型。4. 版型:采用显瘦设计,让连衣裙看起来更加苗条。5. 风格:文艺风格,让连衣裙更加有内涵和品味。6. 图案:印花设计,在连衣裙上印有独特的图案。7. 撞色:采用撞色设计,让连衣裙在色彩上更加鲜明、富有层次感。
- Output[微调后]: 这是一款文艺范的连衣裙,以印花为元素,采用简约的印花,既能够突出文艺气质,又能够展现简约风。在印花的同时又有领子和裙摆的压褶设计,更加凸显文艺气质。简约而不会过于单调,搭配出街,穿着十分舒适。
evaluation result
P-tuning v2 | LoRA | |
---|---|---|
BLEU-4 | 7.71 | 6.13 |
Rouge-1 | 31.35 | 28.36 |
Rouge-2 | 7.19 | 4.38 |
Rouge-l | 25.17 | 17.54 |
Experiment Settings
max_source_length=64
max_target_length=64
per_device_train_batch_size=1
gradient_accumulation_steps=16
max_steps=3000
P-tuning v2
pre_seq_len=128
learning_rate=2e-2
quantization_bit=4
LoRA
learning_rate=5e-4
The implementation uses simple_thu_chatglm6b
Model Deployment
Replace THUDM/chatglm-6b
in the corresponding demo or code with the path of the checkpoint after P-Tuning(in the example, ./output/adgen-chatglm-6b-pt-8-1e-2/ checkpoint-3000
). Note that the current fine-tuning does not support multiple rounds of data, so only the responses from the first round of the conversation are fine-tuned.
Use your own dataset
Modify train_file
, validation_file
and test_file
in train.sh
and evaluate.sh
to your own JSON format dataset paths, and change prompt_column
and response_column
to the keys in the JSON file corresponding to input text and output text.
TODO
- Support for chat data
- Support for full finetuning
quoting
@inproceedings{liu2022p,
title={P-tuning: Prompt tuning can be comparable to fine-tuning across scales and tasks},
author={Liu, Xiao and Ji, Kaixuan and Fu, Yicheng and Tam, Weng and Du, Zhengxiao and Yang, Zhilin and Tang, Jie},
booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)},
pages={61--68},
year={2022}
}