|
|
|
@ -317,7 +317,9 @@ class Trainer:
|
|
|
|
|
callbacks: Optional[List[TrainerCallback]] = None, |
|
|
|
|
optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None), |
|
|
|
|
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, |
|
|
|
|
save_prefixencoder: bool = False, |
|
|
|
|
): |
|
|
|
|
self.save_prefixencoder = save_prefixencoder |
|
|
|
|
if args is None: |
|
|
|
|
output_dir = "tmp_trainer" |
|
|
|
|
logger.info(f"No `TrainingArguments` passed, using `output_dir={output_dir}`.") |
|
|
|
@ -2825,12 +2827,17 @@ class Trainer:
|
|
|
|
|
state_dict = self.model.state_dict() |
|
|
|
|
torch.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME)) |
|
|
|
|
else: |
|
|
|
|
state_dict = self.model.state_dict() |
|
|
|
|
filtered_state_dict = {} |
|
|
|
|
for k, v in self.model.named_parameters(): |
|
|
|
|
if v.requires_grad: |
|
|
|
|
filtered_state_dict[k] = state_dict[k] |
|
|
|
|
self.model.save_pretrained(output_dir, state_dict=filtered_state_dict) |
|
|
|
|
if self.save_prefixencoder: |
|
|
|
|
print("Saving PrefixEncoder") |
|
|
|
|
state_dict = self.model.state_dict() |
|
|
|
|
filtered_state_dict = {} |
|
|
|
|
for k, v in self.model.named_parameters(): |
|
|
|
|
if v.requires_grad: |
|
|
|
|
filtered_state_dict[k] = state_dict[k] |
|
|
|
|
self.model.save_pretrained(output_dir, state_dict=filtered_state_dict) |
|
|
|
|
else: |
|
|
|
|
print("Saving the whole model") |
|
|
|
|
self.model.save_pretrained(output_dir, state_dict=state_dict) |
|
|
|
|
if self.tokenizer is not None: |
|
|
|
|
self.tokenizer.save_pretrained(output_dir) |
|
|
|
|
|
|
|
|
|