mirror of https://github.com/THUDM/ChatGLM-6B
Update README
parent
1a368afd26
commit
a1d9dcc517
|
@ -133,23 +133,39 @@ gradient_accumulation_steps=1
|
|||
|
||||
|
||||
## 模型部署
|
||||
首先载入Tokenizer:
|
||||
|
||||
```python
|
||||
import os
|
||||
import torch
|
||||
from transformers import AutoConfig, AutoModel, AutoTokenizer
|
||||
|
||||
# Load model and tokenizer of ChatGLM-6B
|
||||
config = AutoConfig.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True, pre_seq_len=128)
|
||||
# 载入Tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
||||
model = AutoModel.from_pretrained("THUDM/chatglm-6b", config=config, trust_remote_code=True)
|
||||
```
|
||||
|
||||
# Load PrefixEncoder
|
||||
(1) 如果需要加载的是新 Checkpoint(只包含 PrefixEncoder 参数):
|
||||
|
||||
```python
|
||||
config = AutoConfig.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True, pre_seq_len=128)
|
||||
model = AutoModel.from_pretrained("THUDM/chatglm-6b", config=config, trust_remote_code=True)
|
||||
prefix_state_dict = torch.load(os.path.join(CHECKPOINT_PATH, "pytorch_model.bin"))
|
||||
new_prefix_state_dict = {}
|
||||
for k, v in prefix_state_dict.items():
|
||||
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
|
||||
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
|
||||
```
|
||||
|
||||
(2) 如果需要加载的是旧 Checkpoint(包含 ChatGLM-6B 以及 PrefixEncoder 参数),则直接加载整个 Checkpoint:
|
||||
|
||||
```python
|
||||
config = AutoConfig.from_pretrained(CHECKPOINT_PATH, trust_remote_code=True, pre_seq_len=128)
|
||||
model = AutoModel.from_pretrained(CHECKPOINT_PATH, config=config, trust_remote_code=True)
|
||||
```
|
||||
|
||||
再进行量化即可使用:
|
||||
|
||||
```python
|
||||
print(f"Quantized to 4 bit")
|
||||
model = model.quantize(4)
|
||||
model = model.half().cuda()
|
||||
|
|
Loading…
Reference in New Issue