From a1d9dcc5178a3ad7d738d92db89f0dc94556c9bb Mon Sep 17 00:00:00 2001 From: rainatam Date: Wed, 12 Apr 2023 21:11:29 +0800 Subject: [PATCH] Update README --- ptuning/README.md | 24 ++++++++++++++++++++---- 1 file changed, 20 insertions(+), 4 deletions(-) diff --git a/ptuning/README.md b/ptuning/README.md index 9f4d0a0..a86db16 100644 --- a/ptuning/README.md +++ b/ptuning/README.md @@ -133,23 +133,39 @@ gradient_accumulation_steps=1 ## 模型部署 +首先载入Tokenizer: + ```python import os import torch from transformers import AutoConfig, AutoModel, AutoTokenizer -# Load model and tokenizer of ChatGLM-6B -config = AutoConfig.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True, pre_seq_len=128) +# 载入Tokenizer tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) -model = AutoModel.from_pretrained("THUDM/chatglm-6b", config=config, trust_remote_code=True) +``` -# Load PrefixEncoder +(1) 如果需要加载的是新 Checkpoint(只包含 PrefixEncoder 参数): + +```python +config = AutoConfig.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True, pre_seq_len=128) +model = AutoModel.from_pretrained("THUDM/chatglm-6b", config=config, trust_remote_code=True) prefix_state_dict = torch.load(os.path.join(CHECKPOINT_PATH, "pytorch_model.bin")) new_prefix_state_dict = {} for k, v in prefix_state_dict.items(): new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict) +``` +(2) 如果需要加载的是旧 Checkpoint(包含 ChatGLM-6B 以及 PrefixEncoder 参数),则直接加载整个 Checkpoint: + +```python +config = AutoConfig.from_pretrained(CHECKPOINT_PATH, trust_remote_code=True, pre_seq_len=128) +model = AutoModel.from_pretrained(CHECKPOINT_PATH, config=config, trust_remote_code=True) +``` + +再进行量化即可使用: + +```python print(f"Quantized to 4 bit") model = model.quantize(4) model = model.half().cuda()